Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Veg...Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation lndex (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD 12Q 1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMv which can be identified for 7 to 9 times between 200l and 2009 account for 53.1%, while only 7.9% ofMCD12QI pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCDI2Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMv has the highest R^2 of 0.95 and the lowest RMSE of 14 014 km^2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.展开更多
With the methods of REOF (Rotated Empirical Orthogonal Function), the summer precipitation from 43 stations over eastern China for the 1901 - 2000 period was examined. The results show that South China and Southwest...With the methods of REOF (Rotated Empirical Orthogonal Function), the summer precipitation from 43 stations over eastern China for the 1901 - 2000 period was examined. The results show that South China and Southwest China, the middle and lower reaches of Changiiang River, North China and the southwestern of Northeast China are the three main areas of summer rainfall anomaly. Furthermore, correlation analysis is used in three time series of three mostly summer rainfall modes and four seasonal Pacific SSTA (Sea Surface Temperature Anomaly), and the results suggest that the Pacific SSTA which notably causes the summer rainfall anomaly over eastern China are the SSTA of the preceding winter over Kuroshio region of Northwest Pacific, SSTA of the preceding spring in the eastern and central equatorial Pacific, and SSTA of the current summer in the central region of middle latitude. The relationship between summer precipitation over eastern China and SSTA of Pacific key regions was further verified by SVD (Singular Value Decomposition) analysis. The composite analysis was used to analyze the features of atmospheric general circulation in the years of positive and negative precipitation anomaly. Its results were used to serve as the base of numerical simulation analysis.展开更多
By using the dataset of CMA-STI Tropical Cyclone Optimal Tracks, NCEP/NCAR reanalysis and intensive surface observations, a study is performed of the influences of a low-latitude monsoon surge on the longer persistenc...By using the dataset of CMA-STI Tropical Cyclone Optimal Tracks, NCEP/NCAR reanalysis and intensive surface observations, a study is performed of the influences of a low-latitude monsoon surge on the longer persistence and increase in torrential rains from the landing tropical storm Bilis. Results suggest that the southwest monsoon was anomalously active after Bilis came ashore. The westerly winds in Bilis's south side might give rise to the poleward movement of the SW monsoon, thus enlarging the pressure gradient between Bilis and the anticyclonic circulation to the south with the result of greatly intensified SW monsoon, which fueled plentiful water vapor, heat and momentum into the declining Bilis and allowed its long stay over land instead of erosion and disappearance. Before Bilis's landfall, the 2006 East Asian monsoon surge, characterized by the atmospheric ISO, experienced remarkable northward propagation. After landfall, the strong surge and powerful low frequency vapor convergence were just on the south side of Bilis, resulting in sharply increased rainfall. In addition, a broad belt of high-valued vapor fluxes extended from the eastern Arabian Sea via the Bay of Bengal, Indochina Peninsula and the South China Sea into the south of China. The belt was linked with the SW monsoon surge forming a moist tongue stretching from the Bay of Bengal to the south of China, which supplied continuously abundant vapor for Bilis along with the surge propagating poleward.展开更多
The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Tw...The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Two pairs of experiments were made, spectral nudging (SP) and non-spectral nudging (NOSP), with five members in each group. The members were distinguished by different initial times, and the analysis was based on the ensemble mean of the two simulation pairs. The SP was able to constrain error growth in large-scale circulation in upper-level, during simulation, and generate realistic regional scale patterns. The main focus was the model ability to simulate precipitation. The Tropical Rainfall Measuring Mission (TRMM) 3B42 product was used for precipitation verification. Mean precipitation magnitude was generally overestimated by WRF. Nevertheless, SP simulations suppressed overestimation relative to the NOSP experiments. Compared to TRMM, SP also improved model simulation of precipitation in spatial and temporal distributions, with the ability to reproduce movement of rainbands. However, extreme precipitation events were suppressed in the SP simulations.展开更多
Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the...Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the subtropical high indices and preceding SST in the equatorial East Pacific was the strongest among the others, and has great persistency from last autumn to spring. It is indicated that ENSO events appeared about six months earlier than the change of the subtropical high activities, and the subtropical high intensities enhanced (weakened) and western ridge point was westward (eastward) in the year of El Nino (La Nina) events. It was also observed that there were similar interdecadal oscillation and abrupt variations between Nino3 SST, subtropical high intensities and rainfall of rainy season in Fujian. Therefore, experiments were made on rainfall distribution of rainy season in Fujian. The results showed that the distribution was directly affected by the subtropical high activities, pronouncedly caused by ENSO effect.展开更多
Here we use harmonic analyses to examine seasonal variations of China land rainfall, low-level winds, and atmospheric heating over East Asia during spring to summer and the associated subtropical summer monsoon activi...Here we use harmonic analyses to examine seasonal variations of China land rainfall, low-level winds, and atmospheric heating over East Asia during spring to summer and the associated subtropical summer monsoon activities. Our results indicate that the South China spring rainfall (SCSR) in March is the prophase of East Asian sub-tropical summer monsoon (EASSM), and the onset of EASSM and China summer rainy season starts in early April, characterized by the enhanced rainfall in South China and the seasonal reverse of zonal land-sea thermal contrast in sub-tropical East Asia. The EASSM onset is earlier than that of South China Sea summer monsoon, and it is active in east of 100?E and north of 20?N. Our analyses suggest that the subsequent heating appears over India-China Peninsula in March and South China in April and causes the low-level atmospheric warming and the zonal land-sea thermal contrast seasonal reverse in East Asian subtropics. The atmospheric heating over South China is the main force to drive the southwesterly winds, updrafts and strengthen the summer precipitation in South China.展开更多
基金National Natural Science Foundation of China(No.41171285)Research and Development Special Fund for Public Welfare Industry(Meteorology)of China(No.GYHY201106014)
文摘Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation lndex (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD 12Q 1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMv which can be identified for 7 to 9 times between 200l and 2009 account for 53.1%, while only 7.9% ofMCD12QI pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCDI2Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMv has the highest R^2 of 0.95 and the lowest RMSE of 14 014 km^2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.
基金Natural Science Foundation of China(40331010)Study Project of Jiangsu Key Laboratory ofMeteorological Disaster (KLME050304)
文摘With the methods of REOF (Rotated Empirical Orthogonal Function), the summer precipitation from 43 stations over eastern China for the 1901 - 2000 period was examined. The results show that South China and Southwest China, the middle and lower reaches of Changiiang River, North China and the southwestern of Northeast China are the three main areas of summer rainfall anomaly. Furthermore, correlation analysis is used in three time series of three mostly summer rainfall modes and four seasonal Pacific SSTA (Sea Surface Temperature Anomaly), and the results suggest that the Pacific SSTA which notably causes the summer rainfall anomaly over eastern China are the SSTA of the preceding winter over Kuroshio region of Northwest Pacific, SSTA of the preceding spring in the eastern and central equatorial Pacific, and SSTA of the current summer in the central region of middle latitude. The relationship between summer precipitation over eastern China and SSTA of Pacific key regions was further verified by SVD (Singular Value Decomposition) analysis. The composite analysis was used to analyze the features of atmospheric general circulation in the years of positive and negative precipitation anomaly. Its results were used to serve as the base of numerical simulation analysis.
基金National Basic Research Program of China (973 Program, 2009CB421505)National Key Technology R&D Program (2007BAC29B02)Qing Lan Project of Jiangsu Province
文摘By using the dataset of CMA-STI Tropical Cyclone Optimal Tracks, NCEP/NCAR reanalysis and intensive surface observations, a study is performed of the influences of a low-latitude monsoon surge on the longer persistence and increase in torrential rains from the landing tropical storm Bilis. Results suggest that the southwest monsoon was anomalously active after Bilis came ashore. The westerly winds in Bilis's south side might give rise to the poleward movement of the SW monsoon, thus enlarging the pressure gradient between Bilis and the anticyclonic circulation to the south with the result of greatly intensified SW monsoon, which fueled plentiful water vapor, heat and momentum into the declining Bilis and allowed its long stay over land instead of erosion and disappearance. Before Bilis's landfall, the 2006 East Asian monsoon surge, characterized by the atmospheric ISO, experienced remarkable northward propagation. After landfall, the strong surge and powerful low frequency vapor convergence were just on the south side of Bilis, resulting in sharply increased rainfall. In addition, a broad belt of high-valued vapor fluxes extended from the eastern Arabian Sea via the Bay of Bengal, Indochina Peninsula and the South China Sea into the south of China. The belt was linked with the SW monsoon surge forming a moist tongue stretching from the Bay of Bengal to the south of China, which supplied continuously abundant vapor for Bilis along with the surge propagating poleward.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Two pairs of experiments were made, spectral nudging (SP) and non-spectral nudging (NOSP), with five members in each group. The members were distinguished by different initial times, and the analysis was based on the ensemble mean of the two simulation pairs. The SP was able to constrain error growth in large-scale circulation in upper-level, during simulation, and generate realistic regional scale patterns. The main focus was the model ability to simulate precipitation. The Tropical Rainfall Measuring Mission (TRMM) 3B42 product was used for precipitation verification. Mean precipitation magnitude was generally overestimated by WRF. Nevertheless, SP simulations suppressed overestimation relative to the NOSP experiments. Compared to TRMM, SP also improved model simulation of precipitation in spatial and temporal distributions, with the ability to reproduce movement of rainbands. However, extreme precipitation events were suppressed in the SP simulations.
基金Research on short-term climate prediction model for rainfall in raining seasons of Fujian Province A Natural Science Foundation project for Fujian Province (D9810010)
文摘Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the subtropical high indices and preceding SST in the equatorial East Pacific was the strongest among the others, and has great persistency from last autumn to spring. It is indicated that ENSO events appeared about six months earlier than the change of the subtropical high activities, and the subtropical high intensities enhanced (weakened) and western ridge point was westward (eastward) in the year of El Nino (La Nina) events. It was also observed that there were similar interdecadal oscillation and abrupt variations between Nino3 SST, subtropical high intensities and rainfall of rainy season in Fujian. Therefore, experiments were made on rainfall distribution of rainy season in Fujian. The results showed that the distribution was directly affected by the subtropical high activities, pronouncedly caused by ENSO effect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40921003 and 90711003)the Program of the Chinese Academy of Meteorological Sciences (Grant Nos. 2010Z003 and GYHY 200706005)
文摘Here we use harmonic analyses to examine seasonal variations of China land rainfall, low-level winds, and atmospheric heating over East Asia during spring to summer and the associated subtropical summer monsoon activities. Our results indicate that the South China spring rainfall (SCSR) in March is the prophase of East Asian sub-tropical summer monsoon (EASSM), and the onset of EASSM and China summer rainy season starts in early April, characterized by the enhanced rainfall in South China and the seasonal reverse of zonal land-sea thermal contrast in sub-tropical East Asia. The EASSM onset is earlier than that of South China Sea summer monsoon, and it is active in east of 100?E and north of 20?N. Our analyses suggest that the subsequent heating appears over India-China Peninsula in March and South China in April and causes the low-level atmospheric warming and the zonal land-sea thermal contrast seasonal reverse in East Asian subtropics. The atmospheric heating over South China is the main force to drive the southwesterly winds, updrafts and strengthen the summer precipitation in South China.