利用地面气象站和探空观测资料,对2013年8月16日辽宁地区特大暴雨过程数值模式预报的产品进行检验和对比分析,主要包括降水、500 h Pa位势高度场和副热带高压指数等。结果表明:一般性降水预报准确率T639模式整体优于EC模式,暴雨预报平...利用地面气象站和探空观测资料,对2013年8月16日辽宁地区特大暴雨过程数值模式预报的产品进行检验和对比分析,主要包括降水、500 h Pa位势高度场和副热带高压指数等。结果表明:一般性降水预报准确率T639模式整体优于EC模式,暴雨预报平均准确率EC模式略高于T639模式,T639模式和EC模式降水预报正负距平出现位置近似。多个数值模式对清原站主要降水时段(8月16日11—23时)的降水预报明显偏弱,WRF模式预报的全省3 h最大降水量远大于实况,T639模式和EC模式预报的降水量级均明显小于实况。EC模式和多模式集成72 h内降水落区与强降水中心位置的预报相对较稳定,过去15 d的滑动平均检验结果对降水预报具有一定的指示意义,72 h内EC模式的特征线预报一致性明显高于T639模式,对于辽宁省大部地区及上游高空槽附近EC模式降水预报的离散度小于T639模式。展开更多
利用中国756个站点观测数据、Ni o 3区海温指数和74项环流指数等资料,应用EOF分析和相关分析等方法,对中国西部山区夏季(6—8月)降水的时空分布特征及其与ENSO和大尺度环流的相关关系进行分析。结果表明,中国西部山区夏季降水与冬季(上...利用中国756个站点观测数据、Ni o 3区海温指数和74项环流指数等资料,应用EOF分析和相关分析等方法,对中国西部山区夏季(6—8月)降水的时空分布特征及其与ENSO和大尺度环流的相关关系进行分析。结果表明,中国西部山区夏季降水与冬季(上年12月—2月)Ni o 3区海温具有显著的正相关关系,且两者的相关关系与月份、海拔高度关系密切,并具有年代际变化特征。西部山区降水还与春季(3—5月)西太平洋副热带高压的强度具有显著的正相关关系。将西部山区夏季平均降水作为预测量,前期冬季Ni o 3区海温和春季西太平洋副热带高压强度作为预测因子,分别对秦岭、巫山山区降水建立预测模型,并利用该预测模型对2009—2018年夏季降水进行独立样本回报检验,发现预测模型对秦岭、巫山山区的预测成功率分别为70%和80%,相对误差绝对值通常小于10%,预测效果良好。展开更多
[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling plantho...[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast.展开更多
文摘利用中国756个站点观测数据、Ni o 3区海温指数和74项环流指数等资料,应用EOF分析和相关分析等方法,对中国西部山区夏季(6—8月)降水的时空分布特征及其与ENSO和大尺度环流的相关关系进行分析。结果表明,中国西部山区夏季降水与冬季(上年12月—2月)Ni o 3区海温具有显著的正相关关系,且两者的相关关系与月份、海拔高度关系密切,并具有年代际变化特征。西部山区降水还与春季(3—5月)西太平洋副热带高压的强度具有显著的正相关关系。将西部山区夏季平均降水作为预测量,前期冬季Ni o 3区海温和春季西太平洋副热带高压强度作为预测因子,分别对秦岭、巫山山区降水建立预测模型,并利用该预测模型对2009—2018年夏季降水进行独立样本回报检验,发现预测模型对秦岭、巫山山区的预测成功率分别为70%和80%,相对误差绝对值通常小于10%,预测效果良好。
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(200903051)~~
文摘[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast.