We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber arra...We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber array, are made use of and designed as variable optical attenuators. A compact device with low crosstalk and larger branching-angle is obtained. The device is fabricated on the thermo-optic polymer materials,and the performance of the device is measured. With an applied driving power of less than 200mW, the device has a low crosstalk of less than - 35dB at a wavelength of 1.55 μm.展开更多
To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were est...To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.展开更多
Microflow driven by AC electrothermal pumping electrolytes with high conductivity fluid (ACET) effect is explored in order to seek new methods for (more than 0. 02 S/m) at microscale. Based on the ACET theory, a p...Microflow driven by AC electrothermal pumping electrolytes with high conductivity fluid (ACET) effect is explored in order to seek new methods for (more than 0. 02 S/m) at microscale. Based on the ACET theory, a physical model for particle trapping is established by a set of electrostatics, heat transfer and fluid dynamic equations. Further, fluid velocity fields are predicted using the software FEMLAB. Experiments are performed which verify the numerical results. The experimental results show that with appropriate electrode design, ACET effect can work on fluids with conductivity up to I. 53 S/m and trap particles at a low voltage. ACET devices can be readily integrated on chip into a microsystem. This offers insight into designing ACET lab-chips.展开更多
The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geo...The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonline...In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonlinear set of particle differential equations is converted into set of ordinary differential equations through appropriate transformation.The resulting equations are then resolved by optimal homotopy analysis method.The effect of pertinent parameters of interest on skin friction coefficient,temperature,induced magnetic field,velocity and local Nusselt number is inspected by generating appropriate plots.For numerical results,the built-in bvp4 c technique in computational software MATLAB is used for the convergence and residual errors of obtained series solution.It is perceived that the induced magnetic field is intensified by increasing β.It can also be observed that skin friction coefficient enhances with increasing value of magnetic parameter depending on the stretching ratio a/c.For the validness of the obtained results,a comparison has been made and an excellent agreement of current study with existing literature is found.展开更多
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran...Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifica...This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.展开更多
Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been g...Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park's interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and A1) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.展开更多
An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature differ...An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.展开更多
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of ...A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.展开更多
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated...Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.展开更多
To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cros...To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the local thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8% at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.展开更多
The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation met...The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.展开更多
An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model i...An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.展开更多
Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angl...Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.展开更多
In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and...In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and mass transfer was established. Applying the Rosin-Rammler function, alumina particle size distribution under different feeding quantities was obtained. The temperature response of electrolyte after feeding was included and calculated, and the dissolution processes of alumina with different feeding quantities (0.6, 0.8, 1.0, 1.2, 1.4, 1.6 kg) after feeding were simulated in 300 kA aluminum reduction cell. The results show that with the increase of feeding quantity, accumulated mass fraction of dissolved alumina decreases, and the time required for the rapid dissolution stage extends. When the feeding quantity is 0.6 kg and 1.2 kg, it takes the shortest time for the electrolyte temperature dropping before rebounding back. With the increase of feeding quantity, the dissolution rate in the rapid dissolution stage increases at first and then decreases gradually. The most suitable feeding quantity is 1.2 kg. The fitting equation of alumina dissolution curve under different feeding quantities is obtained, which can be used to evaluate the alumina dissolution and guide the feeding quantity and feeding cycle.展开更多
We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
文摘We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber array, are made use of and designed as variable optical attenuators. A compact device with low crosstalk and larger branching-angle is obtained. The device is fabricated on the thermo-optic polymer materials,and the performance of the device is measured. With an applied driving power of less than 200mW, the device has a low crosstalk of less than - 35dB at a wavelength of 1.55 μm.
基金Project(CSTC 2010BB4301) supported by Natural Science Foundation Project of Chongqing,ChinaProject supported by the Open Fund for Key Laboratory of Manufacture and Test Techniques for Automobile Parts of Ministry of Education Chongqing University of Technology,2003,China
文摘To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.
基金US National Science Foundation ( No ECS-0448896)Tennessee Science Alliance Award
文摘Microflow driven by AC electrothermal pumping electrolytes with high conductivity fluid (ACET) effect is explored in order to seek new methods for (more than 0. 02 S/m) at microscale. Based on the ACET theory, a physical model for particle trapping is established by a set of electrostatics, heat transfer and fluid dynamic equations. Further, fluid velocity fields are predicted using the software FEMLAB. Experiments are performed which verify the numerical results. The experimental results show that with appropriate electrode design, ACET effect can work on fluids with conductivity up to I. 53 S/m and trap particles at a low voltage. ACET devices can be readily integrated on chip into a microsystem. This offers insight into designing ACET lab-chips.
文摘The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
文摘In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonlinear set of particle differential equations is converted into set of ordinary differential equations through appropriate transformation.The resulting equations are then resolved by optimal homotopy analysis method.The effect of pertinent parameters of interest on skin friction coefficient,temperature,induced magnetic field,velocity and local Nusselt number is inspected by generating appropriate plots.For numerical results,the built-in bvp4 c technique in computational software MATLAB is used for the convergence and residual errors of obtained series solution.It is perceived that the induced magnetic field is intensified by increasing β.It can also be observed that skin friction coefficient enhances with increasing value of magnetic parameter depending on the stretching ratio a/c.For the validness of the obtained results,a comparison has been made and an excellent agreement of current study with existing literature is found.
基金Projects(50934002,51104011) supported by the National Natural Science Foundation of ChinaProject(IRT0950) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject(20100480200) supported by China Postdoctoral Science Foundation
文摘Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金Project(51578548)supported by the National Natural Science Foundation of ChinaProject(2018JJ3202)supported by the Natural Science Foundation of Hunan Province,ChinaProject(17C0681)supported by the Educational Departmental Science Research of Hunan Province,China
文摘This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.
基金Under the auspices of the important National Project of high-resolution Earth Observation System(No.00-Y30B15-9001-14/16)National Natural Science Foundation of China(No.41421001)
文摘Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park's interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and A1) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.
基金Supported by the National Natural Science Foundation of China(No.41272263)
文摘An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.
基金the Ministry of Science and Technology of China (No.2002CB714001 and 2001CCB00200)the Youth Fund of State Oceanic Administration (No. 2004203)
文摘A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.
基金Project(20080431380) supported by China Postdoctoral Science Foundation
文摘Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.
基金Supported by the National Natural Science Foundation of China (51004071, 51164015) Special Project for High-end CNC Machine Tools and Basic Manufacturing Equipment of China (2012ZX04007-021) Liaoning Province College Excellent Talents Fund Project (LJQ2013012)
文摘To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the local thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8% at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.
文摘The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.
基金Supported by the Chung Yuan Christian University (CYCU-97-CR-CE)
文摘An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.
基金supported by the Second Stage of Brain Korea 21 Projects,Korea
文摘Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.
基金Project(2010AA065201) supported by the High-Tech Research and Development Program of ChinaProject(2018zzts157) supported by the Fundamental Research Funds for the Central Universities,China
文摘In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and mass transfer was established. Applying the Rosin-Rammler function, alumina particle size distribution under different feeding quantities was obtained. The temperature response of electrolyte after feeding was included and calculated, and the dissolution processes of alumina with different feeding quantities (0.6, 0.8, 1.0, 1.2, 1.4, 1.6 kg) after feeding were simulated in 300 kA aluminum reduction cell. The results show that with the increase of feeding quantity, accumulated mass fraction of dissolved alumina decreases, and the time required for the rapid dissolution stage extends. When the feeding quantity is 0.6 kg and 1.2 kg, it takes the shortest time for the electrolyte temperature dropping before rebounding back. With the increase of feeding quantity, the dissolution rate in the rapid dissolution stage increases at first and then decreases gradually. The most suitable feeding quantity is 1.2 kg. The fitting equation of alumina dissolution curve under different feeding quantities is obtained, which can be used to evaluate the alumina dissolution and guide the feeding quantity and feeding cycle.
文摘We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.