Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted t...Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted turning (LAT) process, it is more difficult to estimate the temperature after preheating because it has a shape of ellipse when a laser heat source is rotated. A prediction method and thermal analysis method for heat source shapes were proposed as a square shaped member was preheated. The temperature distribution was calculated according to the rotation of the member. Compared with the results of the former study, the maximum temperature of the calculation results, 1 407.1 ℃, is 8.5 ℃ higher than that of the square member, which is 1 398.6 ℃. In a LAT process for a square member, the maximum temperature is 1 850.8 ℃. It is recognized that a laser power control process is required because square members show a maximum temperature that exceeds a melting temperature at around a vertex of the member according to the rotation.展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over...Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over the entire composition range at temperatures 298.15, 303.15 and 308.15 K. From these experimental data, the excess available volume, E a V , excess free volume, E f V , excess isothermal compressibility, E T β , excess thermal expansion coefficient, E α , and excess internal pressure, E i π , are calculated. The variation of these properties with composition and temperature are discussed in terms of molecular interactions between unlike molecules of the mixtures. It is found that the values of E a V , E f V , E T β and E α are positive and those of E i π are negative for all the mixtures at each temperature studied, indicating the presence of weak interactions between 2M2P and AN/PN/BN molecules. The variations of E a V , E f V , E T β , E α and E i π values with composition indicate that the interactions in these mixtures follow the order: AN<PN<BN, i.e., the 2M2P-nitrile interaction decreases with the increase of alkyl chain length in these nitrile molecules. In addition, the theoretical ultrasonic velocity is calculated using the scaled particle theory and compared with the experimental values.展开更多
For ground source heat utilization systems, pile heat exchangers are sometimes used. In order for these systems to achieve high performance, control of the system dynamics is important, and the underground temperature...For ground source heat utilization systems, pile heat exchangers are sometimes used. In order for these systems to achieve high performance, control of the system dynamics is important, and the underground temperature must he known. Typically, underground temperature is measured using a thermometer in a borehole. However, in the case of pile heat exchangers, a different method is required, making the system expensive to set up. To overcome this problem, the installation of underground thermometers in the heat exchanger piles themselves is proposed in the present study. The proposed thermometer system consists of thermocouples packed in grout such as silica sand within the piles. However, there is a possibility of measurement errors due to vertical thermal conduction in the steel pipes, and it is important to estimate the measurement accuracy before the development of this system. In the present study, the measurement accuracy is estimated using numerical simulations and then confirmed experimentally. The underground temperature profiles inside and outside the pile are compared. The results indicate that the proposed system offers sufficient accuracy for application to pile heat exchangers.展开更多
The cooling effects of urban green vegetation cover, which can help decrease LST (land surface temperature) in urban area. When air temperature decreases, the electricity consumption of household will also mitigate ...The cooling effects of urban green vegetation cover, which can help decrease LST (land surface temperature) in urban area. When air temperature decreases, the electricity consumption of household will also mitigate loading. Meanwhile, that lack of assessment of green vegetation coverage impact to LST and electricity consumption, so that it could not clearly quantify the environmental contribution of green coves. In Taipei city, for example, FVC (fractional vegetation cover) value and LST was collected from Aster satellite remote sensing images, and data of household electricity consumption was acquired from Taiwan Power Company. Based on these three factors, it analyzed relative model. In the urban area, fractional vegetation cover might influence with land surface temperature and electricity consumption. The result shows that when the value of fractional vegetation cover is low, the air temperature is high. While fractional vegetation cover is increase, not only the land surface temperature is decreasing but the electricity consumption is also reducing. This study hopes can be the reference materials for the future metropolis plan and to inhibit the spread of urban thermal environment.展开更多
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high freq...Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional(1D) and the two-dimensional(2D) inverse heat conduction problem(IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem(DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method(SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases:(1) when the maximum disturbance of temperature of fluid inside the pipe was 3℃,(2) when the maximum disturbance of temperature of fluid inside the pipe was 30℃,(3) when the maximum disturbance of temperature of fluid inside the pipe was 160℃, and(4) when the fluid temperatures inside the pipe were random from 50℃ to 210℃.展开更多
This paper is concerned with the global existence and pointwise estimates of solutions to the generalized Benjamin-Bona-Mahony equations in all space dimensions.By using the energy method, Fourier analysis and pseudo-...This paper is concerned with the global existence and pointwise estimates of solutions to the generalized Benjamin-Bona-Mahony equations in all space dimensions.By using the energy method, Fourier analysis and pseudo-differential operators, the global existence and pointwise convergence rates of the solution are obtained. The decay rate is the same as that of the heat equation and one can see that the solution propagates along the characteristic line.展开更多
The distribution of the planktivorous basking shark Cetorhinus maximus is influenced by zooplankton abundance at small scales and temperature at medium scales in the North Atlantic. Here, we estimate the distribution ...The distribution of the planktivorous basking shark Cetorhinus maximus is influenced by zooplankton abundance at small scales and temperature at medium scales in the North Atlantic. Here, we estimate the distribution of basking sharks on South Atlantic continental shelves, and the relative importance of chlorophyll concentration, as a proxy for zooplankton abun- dance, and temperature in determining habitat suitability for basking sharks at large scales. We used maximum entropy (MaxEnt) and maximum likelihood (MaxLike) species distribution modelling to test three hypotheses: the distribution of basking sharks is determined by (1) temperature, (2) chlorophyll concentration, or (3) both chlorophyll and temperature, while considering other factors, such as oxygen and salinity. Off South America, basking shark habitat included subtropical, temperate and cool-temperate waters between approximately 20°S and 55°S. Off Africa, basking shark habitat was limited to cool-temperate waters off Namibia and southern South Africa. MaxLike models bad a better fit than MaxEnt models. The best model included minimum chlorophyll concentration, dissolved oxygen concentration, and sea surface temperature range, supporting hypothesis 3. However, of all variables included in the best model, minimum chlorophyll concentration had the highest influence on basking shark distribution. Unlike the North Atlantic distribution, the South Atlantic distribution of basking sharks includes subtropical and cool-temperate waters. This difference is explained by high minimum chlorophyll concentration off southern Brazil as compared to North Atlantic subtropical areas. Observations in other regions of the world support this conclusion. The highest habitat suitability for basking sharks is located close to nearshore areas that experience high anthropogenic impact [Current Zoology 61 (5): 811-826, 2015].展开更多
基金Project(70004782)supported by the Regional Strategic Technology Development Program of the Ministry of Knowledge Economy(MKE),KoreaProject(2011-0017407)supported by National Research Foundation(NRF)of KoreaWork financially supported by the Second Stage of Brain Korea 21 Projects
文摘Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted turning (LAT) process, it is more difficult to estimate the temperature after preheating because it has a shape of ellipse when a laser heat source is rotated. A prediction method and thermal analysis method for heat source shapes were proposed as a square shaped member was preheated. The temperature distribution was calculated according to the rotation of the member. Compared with the results of the former study, the maximum temperature of the calculation results, 1 407.1 ℃, is 8.5 ℃ higher than that of the square member, which is 1 398.6 ℃. In a LAT process for a square member, the maximum temperature is 1 850.8 ℃. It is recognized that a laser power control process is required because square members show a maximum temperature that exceeds a melting temperature at around a vertex of the member according to the rotation.
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
文摘Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over the entire composition range at temperatures 298.15, 303.15 and 308.15 K. From these experimental data, the excess available volume, E a V , excess free volume, E f V , excess isothermal compressibility, E T β , excess thermal expansion coefficient, E α , and excess internal pressure, E i π , are calculated. The variation of these properties with composition and temperature are discussed in terms of molecular interactions between unlike molecules of the mixtures. It is found that the values of E a V , E f V , E T β and E α are positive and those of E i π are negative for all the mixtures at each temperature studied, indicating the presence of weak interactions between 2M2P and AN/PN/BN molecules. The variations of E a V , E f V , E T β , E α and E i π values with composition indicate that the interactions in these mixtures follow the order: AN<PN<BN, i.e., the 2M2P-nitrile interaction decreases with the increase of alkyl chain length in these nitrile molecules. In addition, the theoretical ultrasonic velocity is calculated using the scaled particle theory and compared with the experimental values.
文摘For ground source heat utilization systems, pile heat exchangers are sometimes used. In order for these systems to achieve high performance, control of the system dynamics is important, and the underground temperature must he known. Typically, underground temperature is measured using a thermometer in a borehole. However, in the case of pile heat exchangers, a different method is required, making the system expensive to set up. To overcome this problem, the installation of underground thermometers in the heat exchanger piles themselves is proposed in the present study. The proposed thermometer system consists of thermocouples packed in grout such as silica sand within the piles. However, there is a possibility of measurement errors due to vertical thermal conduction in the steel pipes, and it is important to estimate the measurement accuracy before the development of this system. In the present study, the measurement accuracy is estimated using numerical simulations and then confirmed experimentally. The underground temperature profiles inside and outside the pile are compared. The results indicate that the proposed system offers sufficient accuracy for application to pile heat exchangers.
文摘The cooling effects of urban green vegetation cover, which can help decrease LST (land surface temperature) in urban area. When air temperature decreases, the electricity consumption of household will also mitigate loading. Meanwhile, that lack of assessment of green vegetation coverage impact to LST and electricity consumption, so that it could not clearly quantify the environmental contribution of green coves. In Taipei city, for example, FVC (fractional vegetation cover) value and LST was collected from Aster satellite remote sensing images, and data of household electricity consumption was acquired from Taiwan Power Company. Based on these three factors, it analyzed relative model. In the urban area, fractional vegetation cover might influence with land surface temperature and electricity consumption. The result shows that when the value of fractional vegetation cover is low, the air temperature is high. While fractional vegetation cover is increase, not only the land surface temperature is decreasing but the electricity consumption is also reducing. This study hopes can be the reference materials for the future metropolis plan and to inhibit the spread of urban thermal environment.
基金supported by the National Natural Science Foundation of China(Project No.51276009)Program for New Century Excellent Talents in University(No.NCET-13-0651)
文摘Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional(1D) and the two-dimensional(2D) inverse heat conduction problem(IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem(DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method(SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases:(1) when the maximum disturbance of temperature of fluid inside the pipe was 3℃,(2) when the maximum disturbance of temperature of fluid inside the pipe was 30℃,(3) when the maximum disturbance of temperature of fluid inside the pipe was 160℃, and(4) when the fluid temperatures inside the pipe were random from 50℃ to 210℃.
基金supported by the National Natural Science Foundation of China(No.11101121)
文摘This paper is concerned with the global existence and pointwise estimates of solutions to the generalized Benjamin-Bona-Mahony equations in all space dimensions.By using the energy method, Fourier analysis and pseudo-differential operators, the global existence and pointwise convergence rates of the solution are obtained. The decay rate is the same as that of the heat equation and one can see that the solution propagates along the characteristic line.
文摘The distribution of the planktivorous basking shark Cetorhinus maximus is influenced by zooplankton abundance at small scales and temperature at medium scales in the North Atlantic. Here, we estimate the distribution of basking sharks on South Atlantic continental shelves, and the relative importance of chlorophyll concentration, as a proxy for zooplankton abun- dance, and temperature in determining habitat suitability for basking sharks at large scales. We used maximum entropy (MaxEnt) and maximum likelihood (MaxLike) species distribution modelling to test three hypotheses: the distribution of basking sharks is determined by (1) temperature, (2) chlorophyll concentration, or (3) both chlorophyll and temperature, while considering other factors, such as oxygen and salinity. Off South America, basking shark habitat included subtropical, temperate and cool-temperate waters between approximately 20°S and 55°S. Off Africa, basking shark habitat was limited to cool-temperate waters off Namibia and southern South Africa. MaxLike models bad a better fit than MaxEnt models. The best model included minimum chlorophyll concentration, dissolved oxygen concentration, and sea surface temperature range, supporting hypothesis 3. However, of all variables included in the best model, minimum chlorophyll concentration had the highest influence on basking shark distribution. Unlike the North Atlantic distribution, the South Atlantic distribution of basking sharks includes subtropical and cool-temperate waters. This difference is explained by high minimum chlorophyll concentration off southern Brazil as compared to North Atlantic subtropical areas. Observations in other regions of the world support this conclusion. The highest habitat suitability for basking sharks is located close to nearshore areas that experience high anthropogenic impact [Current Zoology 61 (5): 811-826, 2015].