The microstructure and mechanical properties of ZK60 Mg alloy were investigated under different solution treatments and artificial aging conditions. When as-cast ZK60 alloy was solution treated at 400 ℃for 10 h and a...The microstructure and mechanical properties of ZK60 Mg alloy were investigated under different solution treatments and artificial aging conditions. When as-cast ZK60 alloy was solution treated at 400 ℃for 10 h and artificially aged at 150 ℃, the volume fraction of precipitates increased with the aging time up to 30 h. When the as-cast ZK60 alloy was solution treated at 400 ℃ for 10 h and artificially aged at 200 ℃ for 15 20 h, the volume fraction of precipitates reached a peak value. Tensile test at room temperature showed that a high density of the second phase precipitates was beneficial to improving the strength and elongation. Solution treatment at 400 ℃ for 10 h and artificial aging at 150 ℃ for 30 h is considered the optimum heat treatment condition to obtain a good combination of strength and ductility.展开更多
基金Project(2009BB4215)supported by the Natural Science Foundation Project of CQ CSTC, ChinaProject(20090191120013)supported by the PhD Programs Foundation of Ministry of Education of China+2 种基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of ChinaProject(CDJZR10 13 00 01)supported by the Fundamental Research Funds for the Central Universities, China
文摘The microstructure and mechanical properties of ZK60 Mg alloy were investigated under different solution treatments and artificial aging conditions. When as-cast ZK60 alloy was solution treated at 400 ℃for 10 h and artificially aged at 150 ℃, the volume fraction of precipitates increased with the aging time up to 30 h. When the as-cast ZK60 alloy was solution treated at 400 ℃ for 10 h and artificially aged at 200 ℃ for 15 20 h, the volume fraction of precipitates reached a peak value. Tensile test at room temperature showed that a high density of the second phase precipitates was beneficial to improving the strength and elongation. Solution treatment at 400 ℃ for 10 h and artificial aging at 150 ℃ for 30 h is considered the optimum heat treatment condition to obtain a good combination of strength and ductility.