Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operat...Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply.展开更多
Antimony-based Zintl compounds AM2Sb2(A=Ca,Sr,Ba,Yb,Eu;M=Mg,Zn,Cd,Mn),which enable a broad range of manipulation on electrical and thermal transport properties,are considered as an important class of thermoelectric ma...Antimony-based Zintl compounds AM2Sb2(A=Ca,Sr,Ba,Yb,Eu;M=Mg,Zn,Cd,Mn),which enable a broad range of manipulation on electrical and thermal transport properties,are considered as an important class of thermoelectric materials.Phonon and carrier transport engineering were realized in YbMg2Sb2 via equivalent and aliovalent substitution of Zn and Ag,respectively.The roomtemperature thermal conductivity reduces from 1.96 to 1.15 W m^-1 K^-1 for YbMg2-xZnxSb2 due to the mass and strain fluctuation through the formation of the absolute solid solution of YbMg2Sb2-YbZn2Sb2.Furthermore,the carrier concentration has been further optimized by Ag doping(from 0.42×10^19 to 7.72×10^19 cm^-3 at room temperature),and thus the electrical conductivity and the power factor are enhanced effectively.The integrated aspects make the dimensionless figure of merit(zT)reach 0.48 at 703 K,which is 60%higher than the pristine YbMgZnSb2 sample.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in2011-2012
文摘Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply.
基金supported by the National Key Research and Development Program of China (2018YFA0702100)the National Natural Science Foundation of China (21771123)+2 种基金the Programme of Introducing Talents of Discipline to Universities (D16002)the Science and Technology Commission of Shanghai Municipality (15DZ2260300)Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (2008DP173016)
文摘Antimony-based Zintl compounds AM2Sb2(A=Ca,Sr,Ba,Yb,Eu;M=Mg,Zn,Cd,Mn),which enable a broad range of manipulation on electrical and thermal transport properties,are considered as an important class of thermoelectric materials.Phonon and carrier transport engineering were realized in YbMg2Sb2 via equivalent and aliovalent substitution of Zn and Ag,respectively.The roomtemperature thermal conductivity reduces from 1.96 to 1.15 W m^-1 K^-1 for YbMg2-xZnxSb2 due to the mass and strain fluctuation through the formation of the absolute solid solution of YbMg2Sb2-YbZn2Sb2.Furthermore,the carrier concentration has been further optimized by Ag doping(from 0.42×10^19 to 7.72×10^19 cm^-3 at room temperature),and thus the electrical conductivity and the power factor are enhanced effectively.The integrated aspects make the dimensionless figure of merit(zT)reach 0.48 at 703 K,which is 60%higher than the pristine YbMgZnSb2 sample.