A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different ...In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-difference time-domain (FDTD) method. The thermal expansion and thermal-optic effects of silicon are taken into account. The results show that the resonant wavelength of microcavity increases linearly as the temperature rising. The wavelength shift along with temperature is 6.6 pm /℃.展开更多
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
基金surpported by the National 863 Project of China (No.2007AA03Z413)the National Nature Science Foundation of China (No.60727004)the Project of Education Office of Shanxi Province of China (No.09JS041)
文摘In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-difference time-domain (FDTD) method. The thermal expansion and thermal-optic effects of silicon are taken into account. The results show that the resonant wavelength of microcavity increases linearly as the temperature rising. The wavelength shift along with temperature is 6.6 pm /℃.