The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analys...Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.展开更多
The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precip...The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions.展开更多
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and t...The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.展开更多
The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates....The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates.The constitutive model of 5A06-O Al−Mg alloy sheet with the temperature range from 150 to 300℃ was established.Based on the test results,a unique finite element simulation platform for warm hydroforming of 5A06-O Al−Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen,and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up.Combined with the experiment,the influence of the temperature field distribution and loading conditions on the sheet formability was studied.The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material.As the temperature increases,the impact of the punching speed on the forming becomes particularly obvious;the optimal values of the fluid pressure and blank holder force required for forming are reduced.展开更多
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Project(51575364)supported by the National Natural Science Foundation of ChinaProject(2013024014)supported by the Natural Foundation of Liaoning Province,China
文摘Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die and Mould Technology,Huazhong University of Science and Technology,ChinaProject(20120006110017)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(2015M580977)supported by China Postdoctoral Science FoundationProject supported by Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions.
基金Project(50874049) supported by the National Natural Science Foundation of ChinaProject(2008DFB50020) supported by International Science and Technology Cooperation of Ministry of Science and Technology of China
文摘The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.
文摘The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates.The constitutive model of 5A06-O Al−Mg alloy sheet with the temperature range from 150 to 300℃ was established.Based on the test results,a unique finite element simulation platform for warm hydroforming of 5A06-O Al−Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen,and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up.Combined with the experiment,the influence of the temperature field distribution and loading conditions on the sheet formability was studied.The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material.As the temperature increases,the impact of the punching speed on the forming becomes particularly obvious;the optimal values of the fluid pressure and blank holder force required for forming are reduced.