Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational s...Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational speed of400r/min.For increasing the elongation,milled powders were mixed with30%and50%unmilled aluminum powder(mass fraction)with meanparticle size of>100μm and<100μm and then consolidated by hot pressing and hot extrusion with9:1extrusion ratio.Hot extrudedsamples were studied by optical microscopy,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),tensile and hardness tests.The results showed that mechanical milling process andpresence of B4C particles increase the yield strength of Al5083alloy from130to566MPa but strongly decrease elongation(from11.3%to0.49%).Adding<100μm unmilled particles enhanced the ductility and reduced tensile strength and hardness,but usingthe>100μm unmilled particles reduced the tensile strength and ductility at the same time.By increasing the content of unmilledparticles failure mechanism changed from brittle to ductile.展开更多
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ...The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.展开更多
文摘Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational speed of400r/min.For increasing the elongation,milled powders were mixed with30%and50%unmilled aluminum powder(mass fraction)with meanparticle size of>100μm and<100μm and then consolidated by hot pressing and hot extrusion with9:1extrusion ratio.Hot extrudedsamples were studied by optical microscopy,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),tensile and hardness tests.The results showed that mechanical milling process andpresence of B4C particles increase the yield strength of Al5083alloy from130to566MPa but strongly decrease elongation(from11.3%to0.49%).Adding<100μm unmilled particles enhanced the ductility and reduced tensile strength and hardness,but usingthe>100μm unmilled particles reduced the tensile strength and ductility at the same time.By increasing the content of unmilledparticles failure mechanism changed from brittle to ductile.
基金Project(2008A09030004) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject(30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.