The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multip...Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multipass exchanger networks. The method is based on the heuristic that optimal networks should feature maximum energy recovery and have the minimum number of shells. The effectiveness of the developed evolutionary rules is demonstrated through some literature examples.展开更多
For the optimal design of a heat exchanger network,the inlet and outlet stream temperatures of each heat exchanger in the network should be known.An explicit analytical solution of stream temperatures of an arbi-trary...For the optimal design of a heat exchanger network,the inlet and outlet stream temperatures of each heat exchanger in the network should be known.An explicit analytical solution of stream temperatures of an arbi-trary connected heat exchanger network was introduced,which is suitable for the thermal calculation of heat ex-changer networks.For the heat exchanger network synthesis,this solution was further developed and coupled with the stage-wise superstructure heat exchanger networks.The new calculation procedure reduced the computer mem-ory requirement dramatically.On the basis of this solution,a mathematical model for synthesis of heat exchanger networks with genetic algorithm was formulated,which is always feasible and no iteration is needed.Two examples were calculated with the proposed approach and better results were obtained.展开更多
A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the ef...A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.展开更多
A new superstructure form of heat exchanger networks (HEN) isproposed based on expert system system (ES). The new superstructureform is combined with the practical engineering. The differentinvestment cost formula for...A new superstructure form of heat exchanger networks (HEN) isproposed based on expert system system (ES). The new superstructureform is combined with the practical engineering. The differentinvestment cost formula for Different heat exchanger is alsopresented based on ES. The mathematical model for the simultaneousoptimization Of network configuration is established and solved by agenetic algorithm. This method can deal with larger scale HENsynthesis and the optimal HEN configuration is obtainedautomatically. Finally, a case study is presented to Demonstrate theeffectiveness of the method.展开更多
Total site heat integration(TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-...Total site heat integration(TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-fluid circuits, i.e., steam, dowtherms and hot water, have been proposed during last few decades. Indirect heat integration is preferred when the heat sources and sinks are separated in independent plants with rather long distance. This improves energy efficiency by adaption of intermediate fluid circle which acts as a utility provider for plants in a symbiotic network. However, there are some significant factors ignored in conventional TSHI, i.e. the investment of pipeline, cost of pumping and heat loss. These factors simultaneously determine the possibility and performance of heat integration. This work presents a new methodology for indirect heat integration in low temperature range using hot water circuit as intermediate-fluid medium. The new methodology enables the targeting of indirect heat integration across plants considering the factors mentioned earlier. An MINLP model with economic objective is established and solved. The optimization results give the mass flow rate of intermediate-fluid, diameter of pipeline, the temperature of the circuits and the matches of heat exchanger networks(HENS) automatically. Finally, the application of this proposed methodology is illustrated with a case study.展开更多
A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model ...A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.展开更多
System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annea...System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.展开更多
In low-temperature processes, there are interactions between heat exchanger network(HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinat...In low-temperature processes, there are interactions between heat exchanger network(HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a systematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of "pockets", which appears as right nose section in the grand composite curve(EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrigerant system in an ethylene production process.展开更多
Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is ...Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.展开更多
Integrating multiple systems into one has become an important trend in Process Systems Engineering research field since there is strong demand from the modern industries. In this study, a stage-wise superstructurebase...Integrating multiple systems into one has become an important trend in Process Systems Engineering research field since there is strong demand from the modern industries. In this study, a stage-wise superstructurebased method is proposed to synthesize a combined mass and heat exchange network(CM&HEN) which has two parts as the mass exchange network(MEN) and heat exchange network(HEN) involved. To express the possible heat exchange requirements resulted from mass exchange operations, a so called "indistinct HEN superstructure(IHS)", which can contain the all potential matches between streams, is constructed at first. Then, a non-linear programming(NLP) mathematical model is established for the simultaneous synthesis and optimization of networks. Therein, the interaction between mass exchange and heat exchange is modeling formulated.The NLP model has later been examined using an example from literature, and the effectiveness of the proposed method has been demonstrated with the results.展开更多
Multi-period heat exchanger network(HEN) retrofit is usually performed by targeting and matching heat transfer areas. In this paper, based on the reverse order matching method we proposed previously, three strategies ...Multi-period heat exchanger network(HEN) retrofit is usually performed by targeting and matching heat transfer areas. In this paper, based on the reverse order matching method we proposed previously, three strategies of matching heat transfer areas are proposed to minimize the investment cost for the retrofit of HEN in multiperiod, in which replacement of heat exchangers, addition of heat exchangers and addition of heat transfer areas are performed. We demonstrate the procedures through three scenarios, including maximum number of substituted heat exchangers after retrofit, minimum additional heat transfer areas in the retrofitted HEN, and minimum investment cost for retrofit. The strategies are extended to a single period HEN retrofit problem. The results of multi-period and single period HEN retro fit problems indicate the effectiveness of the strategies. Moreover, these results are better than those reported in literature. The strategies are simple and easy to implement,which are of great benefit to large-scale HEN retrofit in practice.展开更多
Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy effic...Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method.展开更多
It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leavi...It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leaving the rest operating conditions( the slave problem) being optimized at the lower level. With the uniqueness in mind, an HEN synthesis expert system may be employed to address both the logical constraints and the global operation parameters′ optimization using enhanced sequential number optimization theory.Case studies demonstrate that the synthesis strategy proposed can effectively simplify both the problem solving and the synthesis process. The validity of the strategy recommended is evidenced by case studies′ results compared.展开更多
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ...A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.展开更多
A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimiz...A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.展开更多
A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of fl...A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly,the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacityflow rates are pretreated; Secondly, several rules are proposed to establish the superstructuremodel of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly,the improving genetic algorithm is applied to solve the mathematical model established at the secondstep effectively, and the original optimal structure of HEN based on the maximum operation limitingcondition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat loadof heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operationcondition between the upper and down bounds of supply temperature and heat capacity flow rates canbe obtained based on the original optimal structure of HEN by means of these rules. A case studydemonstrates the method presented in this paper is effective展开更多
There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in orde...There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.展开更多
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
文摘Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multipass exchanger networks. The method is based on the heuristic that optimal networks should feature maximum energy recovery and have the minimum number of shells. The effectiveness of the developed evolutionary rules is demonstrated through some literature examples.
基金Supported by Shanghai Leading Academic Discipline Project (No.T0503)Shanghai Pujiang Program (No.05PJ14078)Ji-angsu Cuilong Copper Industry Co.,Ltd.
文摘For the optimal design of a heat exchanger network,the inlet and outlet stream temperatures of each heat exchanger in the network should be known.An explicit analytical solution of stream temperatures of an arbi-trary connected heat exchanger network was introduced,which is suitable for the thermal calculation of heat ex-changer networks.For the heat exchanger network synthesis,this solution was further developed and coupled with the stage-wise superstructure heat exchanger networks.The new calculation procedure reduced the computer mem-ory requirement dramatically.On the basis of this solution,a mathematical model for synthesis of heat exchanger networks with genetic algorithm was formulated,which is always feasible and no iteration is needed.Two examples were calculated with the proposed approach and better results were obtained.
基金Supported by the National Natural Science Foundation of China (20976022) and Dalian University of Technology for Constructing Interdiscipline 'Energy+X'. ACKNOWLEDGEMENTS The authors gratefully acknowledge financial support from Lanzhou Petrochemical Company, PetroChina Company Limited.
文摘A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 990630) and the State Major Basic Research Development Program (G20000263).
文摘A new superstructure form of heat exchanger networks (HEN) isproposed based on expert system system (ES). The new superstructureform is combined with the practical engineering. The differentinvestment cost formula for Different heat exchanger is alsopresented based on ES. The mathematical model for the simultaneousoptimization Of network configuration is established and solved by agenetic algorithm. This method can deal with larger scale HENsynthesis and the optimal HEN configuration is obtainedautomatically. Finally, a case study is presented to Demonstrate theeffectiveness of the method.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21476256)
文摘Total site heat integration(TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-fluid circuits, i.e., steam, dowtherms and hot water, have been proposed during last few decades. Indirect heat integration is preferred when the heat sources and sinks are separated in independent plants with rather long distance. This improves energy efficiency by adaption of intermediate fluid circle which acts as a utility provider for plants in a symbiotic network. However, there are some significant factors ignored in conventional TSHI, i.e. the investment of pipeline, cost of pumping and heat loss. These factors simultaneously determine the possibility and performance of heat integration. This work presents a new methodology for indirect heat integration in low temperature range using hot water circuit as intermediate-fluid medium. The new methodology enables the targeting of indirect heat integration across plants considering the factors mentioned earlier. An MINLP model with economic objective is established and solved. The optimization results give the mass flow rate of intermediate-fluid, diameter of pipeline, the temperature of the circuits and the matches of heat exchanger networks(HENS) automatically. Finally, the application of this proposed methodology is illustrated with a case study.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 990630) and the State Major Basic Research Development Program (No. G20000263).
文摘A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.
文摘System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.
基金Supported by the National Basic Research Program of China(2010CB720500)the National Natural Science Foundation(21176178)
文摘In low-temperature processes, there are interactions between heat exchanger network(HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a systematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of "pockets", which appears as right nose section in the grand composite curve(EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrigerant system in an ethylene production process.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (YJRC-2011-11).
文摘Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.
基金Supported by the Fundamental Research Funds for the Central Universities of China(DUT14RC(3)046)China Postdoctoral Science Foundation(2014M551091)the National Natural Science Foundation of China(21406026)
文摘Integrating multiple systems into one has become an important trend in Process Systems Engineering research field since there is strong demand from the modern industries. In this study, a stage-wise superstructurebased method is proposed to synthesize a combined mass and heat exchange network(CM&HEN) which has two parts as the mass exchange network(MEN) and heat exchange network(HEN) involved. To express the possible heat exchange requirements resulted from mass exchange operations, a so called "indistinct HEN superstructure(IHS)", which can contain the all potential matches between streams, is constructed at first. Then, a non-linear programming(NLP) mathematical model is established for the simultaneous synthesis and optimization of networks. Therein, the interaction between mass exchange and heat exchange is modeling formulated.The NLP model has later been examined using an example from literature, and the effectiveness of the proposed method has been demonstrated with the results.
基金Supported by the National Natural Science Foundation of China(21376188,21176198)
文摘Multi-period heat exchanger network(HEN) retrofit is usually performed by targeting and matching heat transfer areas. In this paper, based on the reverse order matching method we proposed previously, three strategies of matching heat transfer areas are proposed to minimize the investment cost for the retrofit of HEN in multiperiod, in which replacement of heat exchangers, addition of heat exchangers and addition of heat transfer areas are performed. We demonstrate the procedures through three scenarios, including maximum number of substituted heat exchangers after retrofit, minimum additional heat transfer areas in the retrofitted HEN, and minimum investment cost for retrofit. The strategies are extended to a single period HEN retrofit problem. The results of multi-period and single period HEN retro fit problems indicate the effectiveness of the strategies. Moreover, these results are better than those reported in literature. The strategies are simple and easy to implement,which are of great benefit to large-scale HEN retrofit in practice.
基金Supported by the National Natural Science Foundation of China(21576036,21406026)
文摘Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method.
文摘It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leaving the rest operating conditions( the slave problem) being optimized at the lower level. With the uniqueness in mind, an HEN synthesis expert system may be employed to address both the logical constraints and the global operation parameters′ optimization using enhanced sequential number optimization theory.Case studies demonstrate that the synthesis strategy proposed can effectively simplify both the problem solving and the synthesis process. The validity of the strategy recommended is evidenced by case studies′ results compared.
基金Supported by the National Natural Science Foundation of China(21406124)
文摘A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)
文摘A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.
基金Supported by the State Major Basic Research Department Program of China (No. G20000263) and the Deutsche Forschungs- gemeinschaft(DFG)(No. RO294/9).
文摘A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly,the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacityflow rates are pretreated; Secondly, several rules are proposed to establish the superstructuremodel of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly,the improving genetic algorithm is applied to solve the mathematical model established at the secondstep effectively, and the original optimal structure of HEN based on the maximum operation limitingcondition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat loadof heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operationcondition between the upper and down bounds of supply temperature and heat capacity flow rates canbe obtained based on the original optimal structure of HEN by means of these rules. A case studydemonstrates the method presented in this paper is effective
文摘There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.