The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of the...The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of thermal contact resistance through studying the microscale mechanism of heat transfer at the interface. The results show that electron has stronger quantum tunneling effect when the thickness of oxide film is smaller than de Broglie wavelength of electron and the heat conduction of oxide film produces microscale effect. The thickness and nature of oxide film dominate the heat transfer at the metal rheologic interface. The main means to design the interface contact conductance are to control the formation of oxide film as well as the process of machining of roller surface and lubrication of interface.展开更多
Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball ...Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball screws considering microscopic fractal characteristics of contact surfaces.The minimum excess principle is employed for normal stress analysis.Moreover,the MB fractal theory is adopted for thermal contact resistance.The effectiveness of the proposed method is validated by self-designed experiment.The comparison between theoretical and experimental results demonstrates that thermal contact resistance of ball screws can be obtained by the proposed method.On this basis,effects of fractal parameters on thermal contact resistance of ball screws are discussed.Moreover,effects of the axial load on thermal contact resistance of ball screws are also analyzed.The conclusion can be drawn that the thermal contact resistance decreases along with the fractal dimension D increase and it increases along with the scale parameter G increase,and thermal contact resistance of ball screws is retained almost constant along with axial load increase before the preload of the right nut turns into zero in value.The application of the proposed method is also conducted and validated by the temperature measurement on a self-designed test bed.展开更多
文摘The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of thermal contact resistance through studying the microscale mechanism of heat transfer at the interface. The results show that electron has stronger quantum tunneling effect when the thickness of oxide film is smaller than de Broglie wavelength of electron and the heat conduction of oxide film produces microscale effect. The thickness and nature of oxide film dominate the heat transfer at the metal rheologic interface. The main means to design the interface contact conductance are to control the formation of oxide film as well as the process of machining of roller surface and lubrication of interface.
基金Projects(51875008,51505012,51575014)supported by the National Natural Science Foundation of ChinaProject supported by the China Scholarship Council
文摘Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball screws considering microscopic fractal characteristics of contact surfaces.The minimum excess principle is employed for normal stress analysis.Moreover,the MB fractal theory is adopted for thermal contact resistance.The effectiveness of the proposed method is validated by self-designed experiment.The comparison between theoretical and experimental results demonstrates that thermal contact resistance of ball screws can be obtained by the proposed method.On this basis,effects of fractal parameters on thermal contact resistance of ball screws are discussed.Moreover,effects of the axial load on thermal contact resistance of ball screws are also analyzed.The conclusion can be drawn that the thermal contact resistance decreases along with the fractal dimension D increase and it increases along with the scale parameter G increase,and thermal contact resistance of ball screws is retained almost constant along with axial load increase before the preload of the right nut turns into zero in value.The application of the proposed method is also conducted and validated by the temperature measurement on a self-designed test bed.