In this paper, the rigid structural thermosensitive polymer (made in lab) of NBS (N-butyl styrene), N, N-DEAM (diethyl acrylamide) and AM (acrylamide) was prepared. The influence of viscosity for copolymer sol...In this paper, the rigid structural thermosensitive polymer (made in lab) of NBS (N-butyl styrene), N, N-DEAM (diethyl acrylamide) and AM (acrylamide) was prepared. The influence of viscosity for copolymer solution under different reaction conditions such as temperatures and inorganic salt (monovalent salt and divalent salt) was analyzed. The experiment studies the combination of polymer situation and three different types of surfactants under certain conditions of the room temperature (25℃) and the formation temperature (76℃). At last, the influence of the surfactant kinds and concentration on the viscosity of the polymer solution are studied. The results show that: The copolymer solution, the apparent viscosity of which decreases with the increasement of temperature, but its viscosity has suddenly increased and thereafter dropped in the transition temperature. So the temperature sensitive effect ofcopolymer is very significantly. When the concentration of inorganic salt and surfactant can be controlled in certain extent, the copolymer solution, the effect increases with the increasement of the concentration, but the viscosity of which decreases with the increasement of shear rate. Shear rate can be controlled in certain extent, shearing stability properties of the copolymer solution are proved.展开更多
Chlorin e6-pHLIPss-AuNRs, a gold nanorod-photosensitizer conjugate containing a pH (low) insertion peptide (pHLIP) with a disulfide bond which imparts extracellular pH (pHe)-driven tumor targeting ability, has b...Chlorin e6-pHLIPss-AuNRs, a gold nanorod-photosensitizer conjugate containing a pH (low) insertion peptide (pHLIP) with a disulfide bond which imparts extracellular pH (pHe)-driven tumor targeting ability, has been successfully developed for bimodal photodynamic and photothermal therapy. In this bimodal therapy, chlorin e6 (Ce6), a second-generation photosensitizer (PS), is used for photodynamic therapy (PDT). Gold nanorods (AuNRs) are used as a hyperthermia agent for photothermal therapy (PTT) and also as a nanocarrier and quencher of Ce6. pHLIPss is designed as a pile-driven targeting probe to enhance accumulation of Ce6 and AuNRs in cancer cells at low pH. In Ce6- pHLIPss-AuNRs, Ce6 is close to and quenched by AuNRs, causing little PDT effect. When exposed to normal physiological pH 7.4, Ce6-pHLIPs^-AuNRs loosely associate with the cell membrane. However, once exposed to acidic pH 6.2, pHLIP actively inserts into the cell membrane, and the conjugates are translocated into cells. When this occurs, Ce6 separates from the AuNRs as a result of disulfide bond cleavage caused by intracellular glutathione (GSH), and singlet oxygen is produced for PDT upon light irradiation. In addition, as individual PTT agent, AuNRs can enhance the accumulation of PSs in the tumor by the enhanced permeation and retention (EPR) effect. Therefore, as indicated by our data, when exposed to acidic pH, Ce6-pHLIPss-AuNRs can achieve synergistic PTT/PDT bimodality for cancer treatment.展开更多
ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by var...ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2~ and OH- ions in the reaction system, while the size can be tuned from 2μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.展开更多
文摘In this paper, the rigid structural thermosensitive polymer (made in lab) of NBS (N-butyl styrene), N, N-DEAM (diethyl acrylamide) and AM (acrylamide) was prepared. The influence of viscosity for copolymer solution under different reaction conditions such as temperatures and inorganic salt (monovalent salt and divalent salt) was analyzed. The experiment studies the combination of polymer situation and three different types of surfactants under certain conditions of the room temperature (25℃) and the formation temperature (76℃). At last, the influence of the surfactant kinds and concentration on the viscosity of the polymer solution are studied. The results show that: The copolymer solution, the apparent viscosity of which decreases with the increasement of temperature, but its viscosity has suddenly increased and thereafter dropped in the transition temperature. So the temperature sensitive effect ofcopolymer is very significantly. When the concentration of inorganic salt and surfactant can be controlled in certain extent, the copolymer solution, the effect increases with the increasement of the concentration, but the viscosity of which decreases with the increasement of shear rate. Shear rate can be controlled in certain extent, shearing stability properties of the copolymer solution are proved.
文摘Chlorin e6-pHLIPss-AuNRs, a gold nanorod-photosensitizer conjugate containing a pH (low) insertion peptide (pHLIP) with a disulfide bond which imparts extracellular pH (pHe)-driven tumor targeting ability, has been successfully developed for bimodal photodynamic and photothermal therapy. In this bimodal therapy, chlorin e6 (Ce6), a second-generation photosensitizer (PS), is used for photodynamic therapy (PDT). Gold nanorods (AuNRs) are used as a hyperthermia agent for photothermal therapy (PTT) and also as a nanocarrier and quencher of Ce6. pHLIPss is designed as a pile-driven targeting probe to enhance accumulation of Ce6 and AuNRs in cancer cells at low pH. In Ce6- pHLIPss-AuNRs, Ce6 is close to and quenched by AuNRs, causing little PDT effect. When exposed to normal physiological pH 7.4, Ce6-pHLIPs^-AuNRs loosely associate with the cell membrane. However, once exposed to acidic pH 6.2, pHLIP actively inserts into the cell membrane, and the conjugates are translocated into cells. When this occurs, Ce6 separates from the AuNRs as a result of disulfide bond cleavage caused by intracellular glutathione (GSH), and singlet oxygen is produced for PDT upon light irradiation. In addition, as individual PTT agent, AuNRs can enhance the accumulation of PSs in the tumor by the enhanced permeation and retention (EPR) effect. Therefore, as indicated by our data, when exposed to acidic pH, Ce6-pHLIPss-AuNRs can achieve synergistic PTT/PDT bimodality for cancer treatment.
文摘ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2~ and OH- ions in the reaction system, while the size can be tuned from 2μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.