The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent re...The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent refinement to 1−2μm,with a distinct basal texture emerging in the stir zone(SZ).Additionally,second-phase particles were fragmented,dispersed,and partially dissolved.Multi-pass FSP(M-FSP)further enhanced the homogeneity of the microstructure,reduced texture intensity differences,and decreased the fraction of second-phase particles by 50%.Both S-FSP and M-FSP SZs demonstrated superplasticity at strain rates below 1×10^(−3)s^(−1)and at temperatures of 250−350℃.The S-FSP SZ exhibited an elongation of 390%at 250℃and 1×10^(−4)s^(−1),while the M-FSP SZ achieved an elongation of 406%at 350℃and 1×10^(−3)s^(−1).The superplastic deformation of SZ was co-dominated by grain boundary sliding(GBS)and the solute-drag mechanism in S-FSP and mainly by GBS in M-FSP.展开更多
Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical propertie...Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical properties can be obtained by adopting air cooling after forging followed by heat treatment of (900℃, 1 h, AC)+(590 ℃, 4 h, AC). Deformation in single β field produces pan-like prior fl grains, while annealing in single fl field produces equiaxed prior fl grains. Cooling rate after forging or annealing in single fl field and the subsequent annealing on the top of α+β field determine the content and morphology of coarse a plates. During aging or the third annealing, fine secondary a plates precipitate. Both ultimate strength and yield strength decrease with the content increase of coarse a plates. Decreasing effective slip length and high crack propagation resistance increase the plasticity. The crisscross coarse a plates with large thickness are helpful to enhance the fracture toughness.展开更多
TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The charac...TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The characteristics of the strengthened layer and nanostructure are studied by atomic force microscopy(AFM), scan- ning electron microscope (SEM), electron backscatter diffraction(EBSD), X-ray diffraction(XRD), and transmis- sion electron microscopy(TEM) appliances, meanwhile the enhanced microhardness is tested at cross section. AFM of the processed surface indicates that the deformation is approximately uniform, and LSP slightly increases the roughness. SEM and EBSD of the strengthened cross section show that a phases are compressed to strip- shaped, a proportion of a and ~ phases is shattered to smaller phases from surface to 200 ttm in depth. The sur- face XRD shows that although there is no new produced phase during LSP, the grain size refinement and the in- troduction of lattice micro-strains lead to the broadened peak. The TEM photographs and diffraction patterns in- dicate that the shock wave provides high strain rate deformation and leads to the formation of nanocrystal. Com- pared with the samples before annealing, the dislocation density is lower and the grain-boundary is more distinct in the annealed samples, but the nanocrystal size does not grow bigger after annealing. The microhardness measurement indicates that LSP improves the microhardness of TC6 for about 12.2% on the surface, and the layer affected by LSP is about 500/~m in depth. The microhardness after annealing is 10 HVo.5 lower, but the affected depth does not change. The thermostable study shows that the strengthened layer of TC6 processed by LSP is stable at 623 K. The strengthened thermostable layer can significantly improve the fatigue resistance, wear resis- tance and stress corrosion resistance of the titanium alloy. The study results break the USA standard AMS2546 that titanium parts after LSP are subjected in subsequent processing within 589 K.展开更多
The effects of heat treatment parameters on the microstructure,and mechanical properties and fractured morphology of Ti-5Al-2Sn-2Zr-4Mo-4Cr with the equiaxed,bi-modal and Widmanst?tten microstructures were investigat...The effects of heat treatment parameters on the microstructure,and mechanical properties and fractured morphology of Ti-5Al-2Sn-2Zr-4Mo-4Cr with the equiaxed,bi-modal and Widmanst?tten microstructures were investigated.The heating temperatures for obtaining the equiaxed,bi-modal and Widmanst?tten microstructures were 830,890 and 920 °C,respectively,followed by furnace cooling at a holding time of 30 min.The volume fraction of primary α phase decreased with increasing the heating temperature,which was 45.8% at 830 °C,and decreased to 15.5% at 890 °C,and then the primary α phase disappeared at 920 °C during furnace cooling.The variation of volume fraction of primary α phase in air cooling is similar to that in furnace cooling.The increase in heating temperature and furnace cooling benefited the precipitation and growth of the secondary α phase.The equiaxed microstructure exhibited excellent mechanical properties,in which the ultimate strength,yield strength,elongation and reduction in area were 1035 MPa,1011 MPa,20.8% and 58.7%,respectively.The yield strength and elongation for the bi-modal microstructure were slightly lower than those of the equiaxed microstructure.The Widmanst?tten microstructure exhibited poor ductility and low yield strength,while the ultimate strength reached 1078 MPa.The dimple fractured mechanism for the equiaxed and bi-modal microstructures proved excellent ductility.The coexistence of dimple and intercrystalline fractured mechanisms for the Widmanst?tten microstructure resulted in the poor ductility.展开更多
The effects of heat treatment on the microstructure and mechanical properties of Mg-3Sn-1Mn alloy were preliminarily investigated by using optical and electron microscopy,X-ray diffraction(XRD) analysis,and tensile ...The effects of heat treatment on the microstructure and mechanical properties of Mg-3Sn-1Mn alloy were preliminarily investigated by using optical and electron microscopy,X-ray diffraction(XRD) analysis,and tensile and creep test.The results indicate that the heat treatment has an obvious effect on the microstructure and mechanical properties of the Mg-3Sn-1Mn alloy.After the solid solution treatment at 420 ℃,a majority of the Mg2Sn phases in the alloy are dissolved into the matrix.However,after the further aging treatment at 250 ℃,lots of fine Mg2Sn phases in the aged alloy are precipitated at the grain boundaries and within the grains.As a result,the tensile and creep properties of the aged alloy are significantly improved.The mechanism for the higher tensile and creep properties of the aged alloy is related to the dispersive distribution of the Mg2Sn phase in the--Mg matrix.展开更多
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated....Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.展开更多
The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300...The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 ℃ and the strain rate ranging from 0.0001 to 1 s 1. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization for the as-homogenized and as-solution treated alloy occur at 400 ℃, 0.01 s i and 450 ℃, 0.001 s-1, respectively. The flow instability region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics.展开更多
The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron micr...The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.展开更多
CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hard...CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.展开更多
The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indi...The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments.展开更多
Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was o...Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.展开更多
Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al a...Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.展开更多
The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effe...The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.展开更多
The microstructures and mechanical properties of Mg-4.2Zn-1.5RE-0.7Zr alloy were investigated under different heat treatment conditions. The as-cast alloy consisted ofα-Mg phase, T-phase and Mg51Zn20 phase. After agi...The microstructures and mechanical properties of Mg-4.2Zn-1.5RE-0.7Zr alloy were investigated under different heat treatment conditions. The as-cast alloy consisted ofα-Mg phase, T-phase and Mg51Zn20 phase. After aging treatment (single-step (325 °C, 10 h) and two-step (325 °C, 4 h)+(175 °C, 14 h)), neither T-phase nor Mg51Zn20 phase dissolved into the matrix and the coarsening ofα-Mg phase was not significant. When peak-aged at 325 °C for 10 h, dense short rod-likeβ′1 phase precipitated in the matrix. Further ageing at 325 °C led to coarsening ofβ′1 phase and a decrease in number density. Alloy aged at 325 °C for 10 h achieved the highest yield strength (YS) and ultimate tensile strength (UTS) of 153.9 MPa and 247.0 MPa, which were increased by 48 MPa and 23 MPa from as-cast condition, respectively. While the elongation slightly decreased to 15.6%. Comparatively, the YS and UTS of alloy two-step aged by (325 °C, 4 h)+(175 °C, 14 h) showed little difference from those of single-step aged alloy, but with a lower elongation of 13.4%. In addition, the fracture surfaces of Mg-4.2Zn-1.5RE-0.7Zr alloy under different thermal conditions were mainly characterized by quasi-cleavage feature, but with differences in the details.展开更多
The microstructure evolution of the Mg 5Zn 0.63Er(mass fraction,%) alloy containing quasicrystalline phase(I-phase) under the as-cast condition was investigated via different heat treatments.The results show that ...The microstructure evolution of the Mg 5Zn 0.63Er(mass fraction,%) alloy containing quasicrystalline phase(I-phase) under the as-cast condition was investigated via different heat treatments.The results show that apart from the precipitation of the W-phase particles,the I-phase almost dissolves into the matrix after solid solution treatment at 480℃ for 10 h(T4 state).The solution-treated alloy was aged at 175℃ for 6-100 h(T6 state).The ultimate tensile strength of the peak-aged alloy is approximately 261 MPa companying with an elongation of 10.5%.The improvement of the tensile strength is mainly attributed to the presence of the rod-like MgZn 2 particles.展开更多
The thermal expansion behavior, microhardness and electrochemical corrosion resistance of Au52Cu27Ag17-x(NiZn0.5)x (x=0,6 and 12) alloys were investigated by dilatometer (DIL), microhardness tester, electrochemi...The thermal expansion behavior, microhardness and electrochemical corrosion resistance of Au52Cu27Ag17-x(NiZn0.5)x (x=0,6 and 12) alloys were investigated by dilatometer (DIL), microhardness tester, electrochemical workstation, X-ray diffractometer(XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).With increasing x, the relative length expansion and DIL maximum temperature Tl m (i.e., thermal stability) of the alloys increase inthermal expansion measurements, which can be explained by the change of the atomic binding energy, mismatch entropy togetherwith phase transformation. With the increase of x, the microhardness can be improved, but the corrosion resistance decreases; inaddition, the anodic peak current densities of polarization curves decrease, which are related closely with the solid solution degreeand dissolution of Ag, Ni and Zn alloying elements in Cl^- -containing solution.展开更多
The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount o...The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount of LaFeSi phase in the as-cast melt-spun ribbons prepared by a copper wheel at a speed of10m/s is less than that in the as-cast arc melting buttons with the same x values.The annealed melt-spun ribbons contain smaller amount of La(Fe,Si)13(1:13)phase than the corresponding annealed arc melting buttons.Although the melt-spun sample has finer crystalline grains ofα-Fe,as indicated by SEM analysis,its crystalline size has not reached nano-scale.Therefore,the magnetic exchange-coupling between1:13phase andα-Fe phase has not been observed in melt-spun ribbons.Further,the maximum negative magnetic entropy change(?SMax)and relative cooling power(RCP)of annealed melt-spun ribbons under a field change of0?2T are weaker than those of the corresponding annealed arc melting buttons.展开更多
基金supported by Hebei Natural Science Foundation,China (No.E2020203158)Hebei Provincial Department of Human Resources and Social Security,China (No.E2020100006)。
文摘The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent refinement to 1−2μm,with a distinct basal texture emerging in the stir zone(SZ).Additionally,second-phase particles were fragmented,dispersed,and partially dissolved.Multi-pass FSP(M-FSP)further enhanced the homogeneity of the microstructure,reduced texture intensity differences,and decreased the fraction of second-phase particles by 50%.Both S-FSP and M-FSP SZs demonstrated superplasticity at strain rates below 1×10^(−3)s^(−1)and at temperatures of 250−350℃.The S-FSP SZ exhibited an elongation of 390%at 250℃and 1×10^(−4)s^(−1),while the M-FSP SZ achieved an elongation of 406%at 350℃and 1×10^(−3)s^(−1).The superplastic deformation of SZ was co-dominated by grain boundary sliding(GBS)and the solute-drag mechanism in S-FSP and mainly by GBS in M-FSP.
基金Project(51101119)supported by the National Natural Science Foundation of China
文摘Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical properties can be obtained by adopting air cooling after forging followed by heat treatment of (900℃, 1 h, AC)+(590 ℃, 4 h, AC). Deformation in single β field produces pan-like prior fl grains, while annealing in single fl field produces equiaxed prior fl grains. Cooling rate after forging or annealing in single fl field and the subsequent annealing on the top of α+β field determine the content and morphology of coarse a plates. During aging or the third annealing, fine secondary a plates precipitate. Both ultimate strength and yield strength decrease with the content increase of coarse a plates. Decreasing effective slip length and high crack propagation resistance increase the plasticity. The crisscross coarse a plates with large thickness are helpful to enhance the fracture toughness.
文摘TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The characteristics of the strengthened layer and nanostructure are studied by atomic force microscopy(AFM), scan- ning electron microscope (SEM), electron backscatter diffraction(EBSD), X-ray diffraction(XRD), and transmis- sion electron microscopy(TEM) appliances, meanwhile the enhanced microhardness is tested at cross section. AFM of the processed surface indicates that the deformation is approximately uniform, and LSP slightly increases the roughness. SEM and EBSD of the strengthened cross section show that a phases are compressed to strip- shaped, a proportion of a and ~ phases is shattered to smaller phases from surface to 200 ttm in depth. The sur- face XRD shows that although there is no new produced phase during LSP, the grain size refinement and the in- troduction of lattice micro-strains lead to the broadened peak. The TEM photographs and diffraction patterns in- dicate that the shock wave provides high strain rate deformation and leads to the formation of nanocrystal. Com- pared with the samples before annealing, the dislocation density is lower and the grain-boundary is more distinct in the annealed samples, but the nanocrystal size does not grow bigger after annealing. The microhardness measurement indicates that LSP improves the microhardness of TC6 for about 12.2% on the surface, and the layer affected by LSP is about 500/~m in depth. The microhardness after annealing is 10 HVo.5 lower, but the affected depth does not change. The thermostable study shows that the strengthened layer of TC6 processed by LSP is stable at 623 K. The strengthened thermostable layer can significantly improve the fatigue resistance, wear resis- tance and stress corrosion resistance of the titanium alloy. The study results break the USA standard AMS2546 that titanium parts after LSP are subjected in subsequent processing within 589 K.
基金Projects(51205318,51275416)supported by the National Natural Science Foundation of ChinaProject(3102014JCQ01016)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of heat treatment parameters on the microstructure,and mechanical properties and fractured morphology of Ti-5Al-2Sn-2Zr-4Mo-4Cr with the equiaxed,bi-modal and Widmanst?tten microstructures were investigated.The heating temperatures for obtaining the equiaxed,bi-modal and Widmanst?tten microstructures were 830,890 and 920 °C,respectively,followed by furnace cooling at a holding time of 30 min.The volume fraction of primary α phase decreased with increasing the heating temperature,which was 45.8% at 830 °C,and decreased to 15.5% at 890 °C,and then the primary α phase disappeared at 920 °C during furnace cooling.The variation of volume fraction of primary α phase in air cooling is similar to that in furnace cooling.The increase in heating temperature and furnace cooling benefited the precipitation and growth of the secondary α phase.The equiaxed microstructure exhibited excellent mechanical properties,in which the ultimate strength,yield strength,elongation and reduction in area were 1035 MPa,1011 MPa,20.8% and 58.7%,respectively.The yield strength and elongation for the bi-modal microstructure were slightly lower than those of the equiaxed microstructure.The Widmanst?tten microstructure exhibited poor ductility and low yield strength,while the ultimate strength reached 1078 MPa.The dimple fractured mechanism for the equiaxed and bi-modal microstructures proved excellent ductility.The coexistence of dimple and intercrystalline fractured mechanisms for the Widmanst?tten microstructure resulted in the poor ductility.
基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject(2007CB613704) supported by the National Basic Research Program of China+1 种基金Projects(2010AC4085,2009AB4134 and 2006AA4012-9-6) supported by the Science and Technology Program of Chongqing,ChinaProject(2010CSTC-HDLS) supported by the Program for Hundreds of Distinguished Leading Scientists of CQ CSTC,China
文摘The effects of heat treatment on the microstructure and mechanical properties of Mg-3Sn-1Mn alloy were preliminarily investigated by using optical and electron microscopy,X-ray diffraction(XRD) analysis,and tensile and creep test.The results indicate that the heat treatment has an obvious effect on the microstructure and mechanical properties of the Mg-3Sn-1Mn alloy.After the solid solution treatment at 420 ℃,a majority of the Mg2Sn phases in the alloy are dissolved into the matrix.However,after the further aging treatment at 250 ℃,lots of fine Mg2Sn phases in the aged alloy are precipitated at the grain boundaries and within the grains.As a result,the tensile and creep properties of the aged alloy are significantly improved.The mechanism for the higher tensile and creep properties of the aged alloy is related to the dispersive distribution of the Mg2Sn phase in the--Mg matrix.
基金Project(51101119)supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.
基金Projects(2010CB731701,2012CB619502) supported by the National Basic Research Program of ChinaProject(CX2012B043) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(51021063) supported by Creative Research Group of National Natural Science Foundation of China
文摘The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 ℃ and the strain rate ranging from 0.0001 to 1 s 1. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization for the as-homogenized and as-solution treated alloy occur at 400 ℃, 0.01 s i and 450 ℃, 0.001 s-1, respectively. The flow instability region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics.
基金Project(2013CB632200)supported by the National Great Theoretic Research,ChinaProject(2011BAE22B01-3)supported by the National Sci&Tech Support Program,ChinaProject(2010DFR50010)supported by the International Cooperation,Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.
基金Project(U1034002)supported by the National Natural Science Foundation of China(NSFC)-Guangdong Natural Science Mutual Funds
文摘CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.
基金Project(Z2011-01-002) supported by the Nonferrous Metals Science Foundation of Hunan Nonferrous Metals Holding Group Co.Ltd.- Central South University,China
文摘The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments.
基金Project(2013AA032403) supported by the National High-Tech Research and Development Program of ChinaProject(YETP0409) supported by the Beijing Higher Education Young Elite Teacher Project in 2013,ChinaProject(51301016) supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.
基金Project (50871084) supported by the National Natural Science Foundation of ChinaProject (2009AA032601) supported by the National High Technology Research and Development Program of China
文摘Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.
文摘The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.
基金Project (51275295) supported by the National Natural Science Foundation of ChinaProject (USCAST2012-15) supported by the Funded Projects of SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject (20120073120011) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The microstructures and mechanical properties of Mg-4.2Zn-1.5RE-0.7Zr alloy were investigated under different heat treatment conditions. The as-cast alloy consisted ofα-Mg phase, T-phase and Mg51Zn20 phase. After aging treatment (single-step (325 °C, 10 h) and two-step (325 °C, 4 h)+(175 °C, 14 h)), neither T-phase nor Mg51Zn20 phase dissolved into the matrix and the coarsening ofα-Mg phase was not significant. When peak-aged at 325 °C for 10 h, dense short rod-likeβ′1 phase precipitated in the matrix. Further ageing at 325 °C led to coarsening ofβ′1 phase and a decrease in number density. Alloy aged at 325 °C for 10 h achieved the highest yield strength (YS) and ultimate tensile strength (UTS) of 153.9 MPa and 247.0 MPa, which were increased by 48 MPa and 23 MPa from as-cast condition, respectively. While the elongation slightly decreased to 15.6%. Comparatively, the YS and UTS of alloy two-step aged by (325 °C, 4 h)+(175 °C, 14 h) showed little difference from those of single-step aged alloy, but with a lower elongation of 13.4%. In addition, the fracture surfaces of Mg-4.2Zn-1.5RE-0.7Zr alloy under different thermal conditions were mainly characterized by quasi-cleavage feature, but with differences in the details.
基金Project(2007CB613706) supported by the National Basic Research Program of ChinaProjects(151071004,51101002) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of the Mg 5Zn 0.63Er(mass fraction,%) alloy containing quasicrystalline phase(I-phase) under the as-cast condition was investigated via different heat treatments.The results show that apart from the precipitation of the W-phase particles,the I-phase almost dissolves into the matrix after solid solution treatment at 480℃ for 10 h(T4 state).The solution-treated alloy was aged at 175℃ for 6-100 h(T6 state).The ultimate tensile strength of the peak-aged alloy is approximately 261 MPa companying with an elongation of 10.5%.The improvement of the tensile strength is mainly attributed to the presence of the rod-like MgZn 2 particles.
基金Projects(51171091,51471099,51571132)supported by the National Natural Science Foundation of ChinaProject(2012CB825702)supported by the National Basic Research Program of China
文摘The thermal expansion behavior, microhardness and electrochemical corrosion resistance of Au52Cu27Ag17-x(NiZn0.5)x (x=0,6 and 12) alloys were investigated by dilatometer (DIL), microhardness tester, electrochemical workstation, X-ray diffractometer(XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).With increasing x, the relative length expansion and DIL maximum temperature Tl m (i.e., thermal stability) of the alloys increase inthermal expansion measurements, which can be explained by the change of the atomic binding energy, mismatch entropy togetherwith phase transformation. With the increase of x, the microhardness can be improved, but the corrosion resistance decreases; inaddition, the anodic peak current densities of polarization curves decrease, which are related closely with the solid solution degreeand dissolution of Ag, Ni and Zn alloying elements in Cl^- -containing solution.
基金Project (16ZB0301) supported by the Research Program of Sichuan Provincial Education Department,China
文摘The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount of LaFeSi phase in the as-cast melt-spun ribbons prepared by a copper wheel at a speed of10m/s is less than that in the as-cast arc melting buttons with the same x values.The annealed melt-spun ribbons contain smaller amount of La(Fe,Si)13(1:13)phase than the corresponding annealed arc melting buttons.Although the melt-spun sample has finer crystalline grains ofα-Fe,as indicated by SEM analysis,its crystalline size has not reached nano-scale.Therefore,the magnetic exchange-coupling between1:13phase andα-Fe phase has not been observed in melt-spun ribbons.Further,the maximum negative magnetic entropy change(?SMax)and relative cooling power(RCP)of annealed melt-spun ribbons under a field change of0?2T are weaker than those of the corresponding annealed arc melting buttons.