Non-equilibrium molecular dynamics simulations have been performed to investigate the effect of the cross-section shape on the thermal conductivity of argon nanowires. Some typical cross-section shapes, such as triang...Non-equilibrium molecular dynamics simulations have been performed to investigate the effect of the cross-section shape on the thermal conductivity of argon nanowires. Some typical cross-section shapes, such as triangle, square, pentagon, hexagon and circle, axe carefully explored. The simulation results show that with the same cross-sectional area of the regular polygons, tim thermal conductivities decrease with the reduction of the sides of the polygons, and the thermal conductivity of the circular nanowire is larger than those of the other polygonal ones. Phonon gas kinetic theory is used to analyse the phonon transport in nanowires, and the concept of equivalent diameter is proposed to illustrate the characteristic dimension of the none-circulax cross-section.展开更多
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ...The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.展开更多
This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermedi...This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.展开更多
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim...The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
To predict the heat diffusion in a given region over time, it is often necessary to find the numerical solution for heat equation. However, the computational domain of classical numerical methods are limited to fiat s...To predict the heat diffusion in a given region over time, it is often necessary to find the numerical solution for heat equation. However, the computational domain of classical numerical methods are limited to fiat spacetime. With the techniques of discrete differential calculus, we propose two unconditional stable numerical schemes for simulation heat equation on space manifold and time. The analysis of their stability and error is accomplished by the use of maximum principle.展开更多
This paper illustrates the use of a general purpose differential equation (DE) solver called FlexPDE for the solution heat transfer problems in electric wire. FlexPDE uses the finite element method for the solution ...This paper illustrates the use of a general purpose differential equation (DE) solver called FlexPDE for the solution heat transfer problems in electric wire. FlexPDE uses the finite element method for the solution of boundary and initial value problems. A flexible input of the governing DE's and of material properties functions allows the simulation of non-linear variable behavior quickly and inexpensively. A modeling of temperature distribution in one-dimensional problem, a cross section of an electric wire was simulated. Comparison of those results obtained by FlexPDE with analytical and numerical solutions are done. The results compared well with those obtained from the analytical and numerical methods. The adaptability of the FlexPDE software for solving a variety of problem types was clearly demonstrated.展开更多
Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module o...Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).展开更多
Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhau...Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.展开更多
Helical-coil is a common structure of heat exchanger unit in phase change heat accumulator and usually has the equal coil pitch between adjacent coils. Its thermal performances could be improved by improving the unifo...Helical-coil is a common structure of heat exchanger unit in phase change heat accumulator and usually has the equal coil pitch between adjacent coils. Its thermal performances could be improved by improving the uniformity of the phase change material (PCM) temperature distribution. Thus, a novel non-equidistant helical-coil structure was proposed in this study. Its coil pitch decreased along the flow direction of heat transfer fluid, which made the heat exchange area in unit volume increase to match the decreasing temperature difference between the heat transfer fluid and PCM. The structure was optimized using numerical simulation. An experimental system was developed and the experiment results indicated that the proposed non-equidistant helical-coil heat accumulator was more effective than equidistant helical-coil for latent heat storage. The uniformity of the temperaalre distribution was also confirmed by simulation results.展开更多
This paper describes a study of point contact elastohydrodynamic(EHD)lubrication behavior at high speeds(up to 20 m s1).Central film thicknesses were measured by optical interferometry device.The influence of slide-ro...This paper describes a study of point contact elastohydrodynamic(EHD)lubrication behavior at high speeds(up to 20 m s1).Central film thicknesses were measured by optical interferometry device.The influence of slide-roll ratio and operating temperature on the central film thickness was determined.The influence of thermal effects on the reduction of film thickness was discussed via the analysis of numerical simulation method considering thermal effects.Subsequently,the experimental data was used to amend a set of unified parameters for the thermal corrections for different types of oil at high speeds.展开更多
The natural convective heat transfer performance and thermo-fluidic characteristics of honeycombs with/without chimney extensions are numerically investigated.The present numerical simulations are validated by the pur...The natural convective heat transfer performance and thermo-fluidic characteristics of honeycombs with/without chimney extensions are numerically investigated.The present numerical simulations are validated by the purposely-designed experimental measurements on honeycombs with/without chimney.Good agreement between numerical simulation and experimental measurement is obtained.The influences of inclination angle and geometric parameters such as cell shape,streamwise and spanwise length are also numerically quantified.With the increment in inclination angle,the overall heat transfer rate decreases for the honeycombs with/without chimney.For honeycombs with the same void volume fraction but different cell shapes,there is little difference on the overall heat transfer rate.To enhance the natural convective heat transfer of honeycombs,these techniques including increasing the length of honeycomb in the streamwise/spanwise direction,increasing the thermal conductivity of hon-eycomb structure or adding a chimney extension may be helpful.展开更多
文摘Non-equilibrium molecular dynamics simulations have been performed to investigate the effect of the cross-section shape on the thermal conductivity of argon nanowires. Some typical cross-section shapes, such as triangle, square, pentagon, hexagon and circle, axe carefully explored. The simulation results show that with the same cross-sectional area of the regular polygons, tim thermal conductivities decrease with the reduction of the sides of the polygons, and the thermal conductivity of the circular nanowire is larger than those of the other polygonal ones. Phonon gas kinetic theory is used to analyse the phonon transport in nanowires, and the concept of equivalent diameter is proposed to illustrate the characteristic dimension of the none-circulax cross-section.
基金Project(2008A09030004) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject(30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.
文摘This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.
基金jointly supported by the National Natural Science Foundation of China under Grants 40905045 and 40821092the Open Project for LASG-IAP-CAS+2 种基金the Study Project of Jiangsu Provincial 333 High-level Talents Cultivation Programmethe Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education under Grant KLME05001the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金Supported by China Postdoctoral Science Foundation under Grant No.20090460102
文摘To predict the heat diffusion in a given region over time, it is often necessary to find the numerical solution for heat equation. However, the computational domain of classical numerical methods are limited to fiat spacetime. With the techniques of discrete differential calculus, we propose two unconditional stable numerical schemes for simulation heat equation on space manifold and time. The analysis of their stability and error is accomplished by the use of maximum principle.
文摘This paper illustrates the use of a general purpose differential equation (DE) solver called FlexPDE for the solution heat transfer problems in electric wire. FlexPDE uses the finite element method for the solution of boundary and initial value problems. A flexible input of the governing DE's and of material properties functions allows the simulation of non-linear variable behavior quickly and inexpensively. A modeling of temperature distribution in one-dimensional problem, a cross section of an electric wire was simulated. Comparison of those results obtained by FlexPDE with analytical and numerical solutions are done. The results compared well with those obtained from the analytical and numerical methods. The adaptability of the FlexPDE software for solving a variety of problem types was clearly demonstrated.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2011CB707204)the National Natural Science Foundation of China(Grant No.50706020)
文摘Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51576187)Fundamental Research Funds for the Central Universities(Grant No.WK2090130016)
文摘Helical-coil is a common structure of heat exchanger unit in phase change heat accumulator and usually has the equal coil pitch between adjacent coils. Its thermal performances could be improved by improving the uniformity of the phase change material (PCM) temperature distribution. Thus, a novel non-equidistant helical-coil structure was proposed in this study. Its coil pitch decreased along the flow direction of heat transfer fluid, which made the heat exchange area in unit volume increase to match the decreasing temperature difference between the heat transfer fluid and PCM. The structure was optimized using numerical simulation. An experimental system was developed and the experiment results indicated that the proposed non-equidistant helical-coil heat accumulator was more effective than equidistant helical-coil for latent heat storage. The uniformity of the temperaalre distribution was also confirmed by simulation results.
基金supported by National Nature Science Foundation of China(Grant Nos.51027007,51021064)the International Science&Technology Cooperation Project(Grant No.2011DFA70980)
文摘This paper describes a study of point contact elastohydrodynamic(EHD)lubrication behavior at high speeds(up to 20 m s1).Central film thicknesses were measured by optical interferometry device.The influence of slide-roll ratio and operating temperature on the central film thickness was determined.The influence of thermal effects on the reduction of film thickness was discussed via the analysis of numerical simulation method considering thermal effects.Subsequently,the experimental data was used to amend a set of unified parameters for the thermal corrections for different types of oil at high speeds.
基金supported by the National 111 Project of China(Grant No.B06024)the National Basic Research Program of China("973"Project)(Grant No.2011CB610305)the National Natural Science Foundation of China(Grant No.51206128)
文摘The natural convective heat transfer performance and thermo-fluidic characteristics of honeycombs with/without chimney extensions are numerically investigated.The present numerical simulations are validated by the purposely-designed experimental measurements on honeycombs with/without chimney.Good agreement between numerical simulation and experimental measurement is obtained.The influences of inclination angle and geometric parameters such as cell shape,streamwise and spanwise length are also numerically quantified.With the increment in inclination angle,the overall heat transfer rate decreases for the honeycombs with/without chimney.For honeycombs with the same void volume fraction but different cell shapes,there is little difference on the overall heat transfer rate.To enhance the natural convective heat transfer of honeycombs,these techniques including increasing the length of honeycomb in the streamwise/spanwise direction,increasing the thermal conductivity of hon-eycomb structure or adding a chimney extension may be helpful.