Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tr...Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.展开更多
Non-equilibrium molecular dynamics simulations have been performed to investigate the effect of the cross-section shape on the thermal conductivity of argon nanowires. Some typical cross-section shapes, such as triang...Non-equilibrium molecular dynamics simulations have been performed to investigate the effect of the cross-section shape on the thermal conductivity of argon nanowires. Some typical cross-section shapes, such as triangle, square, pentagon, hexagon and circle, axe carefully explored. The simulation results show that with the same cross-sectional area of the regular polygons, tim thermal conductivities decrease with the reduction of the sides of the polygons, and the thermal conductivity of the circular nanowire is larger than those of the other polygonal ones. Phonon gas kinetic theory is used to analyse the phonon transport in nanowires, and the concept of equivalent diameter is proposed to illustrate the characteristic dimension of the none-circulax cross-section.展开更多
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ...The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.展开更多
This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermedi...This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.展开更多
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim...The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and ther...A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and thermal waste transport equations. Finite volume method (FVM) is used to discretize the shallow water equations, and flux difference splitting (FDS) scheme is applied. The calculated area with the same temperature increment shows the effect of thermal discharge on sea water. A comparison between simulated results and the experimental data shows good agreement. It indicates that this method can give high precision in the heat transfer simulation in coastal areas.展开更多
The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the ef...A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.展开更多
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No.RO 294/9).
文摘Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.
文摘Non-equilibrium molecular dynamics simulations have been performed to investigate the effect of the cross-section shape on the thermal conductivity of argon nanowires. Some typical cross-section shapes, such as triangle, square, pentagon, hexagon and circle, axe carefully explored. The simulation results show that with the same cross-sectional area of the regular polygons, tim thermal conductivities decrease with the reduction of the sides of the polygons, and the thermal conductivity of the circular nanowire is larger than those of the other polygonal ones. Phonon gas kinetic theory is used to analyse the phonon transport in nanowires, and the concept of equivalent diameter is proposed to illustrate the characteristic dimension of the none-circulax cross-section.
基金Project(2008A09030004) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject(30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.
文摘This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.
基金jointly supported by the National Natural Science Foundation of China under Grants 40905045 and 40821092the Open Project for LASG-IAP-CAS+2 种基金the Study Project of Jiangsu Provincial 333 High-level Talents Cultivation Programmethe Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education under Grant KLME05001the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
文摘A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and thermal waste transport equations. Finite volume method (FVM) is used to discretize the shallow water equations, and flux difference splitting (FDS) scheme is applied. The calculated area with the same temperature increment shows the effect of thermal discharge on sea water. A comparison between simulated results and the experimental data shows good agreement. It indicates that this method can give high precision in the heat transfer simulation in coastal areas.
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金Supported by the National Natural Science Foundation of China (20976022) and Dalian University of Technology for Constructing Interdiscipline 'Energy+X'. ACKNOWLEDGEMENTS The authors gratefully acknowledge financial support from Lanzhou Petrochemical Company, PetroChina Company Limited.
文摘A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.