Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carri...Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carried out simultaneously in seven Mexican cities, corresponding to warm dry and warm humid climates. In this article, case studies of low-cost dwellings in the city of Hermosillo (in northwest Mexico), are presented and analyzed. Field surveys were carried out to obtain information about the physical characteristics of the dwellings and their occupants, as well as the indoor thermal environment. Neutral temperature was obtained from the applied survey. The high neutral temperature reveals the effect of inhabitants' adaptation mechanism to extreme climates. Occupant comfort votes as a function of indoor air temperatures were analyzed, and different characteristics such as age, size and gender were evaluated separately. The results show the variability of the neutral temperature and the tolerance to temperature changes, depending on the population's specific characteristics. In many cases where the population does not have access to artificial acclimatization devices, the neutral temperature values for specific climates and people can inform architects when choosing the most suitable thermal strategies for building design.展开更多
The paper discusses the results of a field study carried out in four cities in Mexico: Hermosillo, Mexicali, Merida and Colima, during the warmest seasons of 2006-2007. The survey is according to the adaptive approac...The paper discusses the results of a field study carried out in four cities in Mexico: Hermosillo, Mexicali, Merida and Colima, during the warmest seasons of 2006-2007. The survey is according to the adaptive approach of thermal comfort. The cities' climates are hot dry, hot sub-humid and hot humid. The respondents were inhabitants of low cost housings without air conditioning. The research was performed during warm seasons and according to ISO 10551. The measurements were processed by the common method of linear regression and also by alternative methods, useful for asymmetric climates. Individuals declared comfort at very high temperatures, either high or low humidity, therefore, the resulting neutral temperatures are higher than 30 ℃, except in Colima (28.8 ℃). The upper limits of comfort ranges achieved temperatures up to 35 ℃. The results suggest how great is the capacity of humans to adapt to conditions as extreme as those measured in the study.展开更多
Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concer...Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.展开更多
The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better unde...The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux (FCO2) in subtropical forests, soil FCO2 rates were quantified in five adjacent forest types (camphor tree forest, Masson pine forest, mixed camphor tree and Masson pine forest, Chinese sweet gum forest, and slash pine forest) at the Tianjiling National Park in Changsha, Hunan Province, in subtropical China, from January to December 2010. The influences of soil temperature (Tsoil), volumetric soil water content (0soiI), soil pH, soil organic carbon (SOC) and soil C/nitrogen (N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest (3.53 ± 0.51 μmol m-2 s-I), followed by, in order, the mixed, Masson pine, Chinese sweet gum, and slash pine forests (1.53 ± 0.25 μmol m-2 sl). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer (July and August) and the minimum values during winter (December and January). Soil FCO2 rates were correlated to Tsoil and 0soil, but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties, such as soil pH, SOC, and C/N ratio, in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.展开更多
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious im...China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.展开更多
文摘Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carried out simultaneously in seven Mexican cities, corresponding to warm dry and warm humid climates. In this article, case studies of low-cost dwellings in the city of Hermosillo (in northwest Mexico), are presented and analyzed. Field surveys were carried out to obtain information about the physical characteristics of the dwellings and their occupants, as well as the indoor thermal environment. Neutral temperature was obtained from the applied survey. The high neutral temperature reveals the effect of inhabitants' adaptation mechanism to extreme climates. Occupant comfort votes as a function of indoor air temperatures were analyzed, and different characteristics such as age, size and gender were evaluated separately. The results show the variability of the neutral temperature and the tolerance to temperature changes, depending on the population's specific characteristics. In many cases where the population does not have access to artificial acclimatization devices, the neutral temperature values for specific climates and people can inform architects when choosing the most suitable thermal strategies for building design.
文摘The paper discusses the results of a field study carried out in four cities in Mexico: Hermosillo, Mexicali, Merida and Colima, during the warmest seasons of 2006-2007. The survey is according to the adaptive approach of thermal comfort. The cities' climates are hot dry, hot sub-humid and hot humid. The respondents were inhabitants of low cost housings without air conditioning. The research was performed during warm seasons and according to ISO 10551. The measurements were processed by the common method of linear regression and also by alternative methods, useful for asymmetric climates. Individuals declared comfort at very high temperatures, either high or low humidity, therefore, the resulting neutral temperatures are higher than 30 ℃, except in Colima (28.8 ℃). The upper limits of comfort ranges achieved temperatures up to 35 ℃. The results suggest how great is the capacity of humans to adapt to conditions as extreme as those measured in the study.
文摘Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.
基金Supported by the National Forestry Public Welfare Research Program of China(Nos.201104005 and 200804030)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-10-0151)+1 种基金the 100 Talents Program of Hunan Province,China(No.2011516)Central South University of Forestry and Technology,China(No.0842)
文摘The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux (FCO2) in subtropical forests, soil FCO2 rates were quantified in five adjacent forest types (camphor tree forest, Masson pine forest, mixed camphor tree and Masson pine forest, Chinese sweet gum forest, and slash pine forest) at the Tianjiling National Park in Changsha, Hunan Province, in subtropical China, from January to December 2010. The influences of soil temperature (Tsoil), volumetric soil water content (0soiI), soil pH, soil organic carbon (SOC) and soil C/nitrogen (N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest (3.53 ± 0.51 μmol m-2 s-I), followed by, in order, the mixed, Masson pine, Chinese sweet gum, and slash pine forests (1.53 ± 0.25 μmol m-2 sl). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer (July and August) and the minimum values during winter (December and January). Soil FCO2 rates were correlated to Tsoil and 0soil, but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties, such as soil pH, SOC, and C/N ratio, in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.
基金supported by the State Key Program of National Natural Science of China (Grant No. 40830957)the National Key Basic Research Program (Grant Nos. 2013CB430200, 2013CB430206)
文摘China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.