Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns reveal...Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.展开更多
In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynami...In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.展开更多
Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal...Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.展开更多
Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction te...Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.展开更多
The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading...The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.展开更多
The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal d...The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.展开更多
The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperat...The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperatures. This method can control the bias voltage of MOS transistors by memory and DAC to meet two restrictions about responsivity and offset before traditional two-point calibration is implemented. The simulation results seem that this non-uniformity correction can work at uniform substrate temperature with fluctuant range of 4K.展开更多
On the basis of heat transfer and chemical kinetics theory, both connections coal self ignite with oxygen concentration and range of oxidation zone with air leak intensity are analyzed, and calculating method is deduc...On the basis of heat transfer and chemical kinetics theory, both connections coal self ignite with oxygen concentration and range of oxidation zone with air leak intensity are analyzed, and calculating method is deduced to gain the lower limit of oxygen concentration and the range of oxidation zone. The change rule of correlative parameter is quantitatively researched between before nitrogen injection and after nitrogen injection in gob, such as oxygen concentration, oxidation zone width, etc. According to theoretical calculation, the relation position and flow of nitrogen injection with oxidation zone width is conformed, and computational formulas of the best flow and position of nitrogen injection are obtained. It offers a theoretic criterion for preventing and controlling float coal self ignite by nitrogen injection in gob.展开更多
Porous tetragonal BaTiO 3 ceramic was successfully prepared by a combination of hydrothermal and low-temperature-sintering method.The hollow TiO2@BaCO 3 as the sintering precursor was synthesized via a simple hydrothe...Porous tetragonal BaTiO 3 ceramic was successfully prepared by a combination of hydrothermal and low-temperature-sintering method.The hollow TiO2@BaCO 3 as the sintering precursor was synthesized via a simple hydrothermal method,and then porous BaTiO 3 was generated by calcining the hollow TiO2@BaCO 3 precursor at 900 ℃ without additive.The hollow TiO2@BaCO 3 structure plays two important roles in the preparing of the porous BaTiO 3 ceramic.First,the TiO2@BaCO 3 hollow structure provides high surface areas and increases the contact points between BaCO 3 and TiO2,which can reduce the sintering temperature of the BaTiO 3 ceramic.Second,the cavity of the ordered arranged TiO2@BaCO 3 hollow sphere shows important influence on the porous structure,and the pore size of the as-prepared porous BaTiO 3 ceramic can be tuned from several nanometers to hundreds nanomters by changing the sintering temperature.The formation mechanism of the porous BaTiO 3 ceramic was proposed.展开更多
Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements s...Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements show a phase transition at approxi- mately 114 K (TA). No splitting or broadening in the central line of 23Na NMR spectra is observed below and above the transi- tion temperature indicating no internal field being detected. The spin-lattice relaxation rate divided by T (I/T1T) shows a sharp drop at about 110 K which suggests a gap opening behavior. Below the phase transition temperature zone, I/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states (DOS) because of the gap. No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature. These results suggest a commensurate charge-density-wave (CDW) phase transition occurring.展开更多
文摘Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science and Technology Pillar Program during the Twelfth Five-Year Plan of China
文摘In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.
基金Projects 50474067 supported by the National Natural Science Foundation of China2007KF11 by the State Key Laboratory of Coal Resources and Safety Mining
文摘Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.
基金Project(U0837604) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(Jinchuan 201114) supported by the Pre Research Foundation of Jinchuan Group Ltd.,ChinaProject(2011148) supported by the Analysis and Testing Funds of Kunming University of Science and Technology,China
文摘Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.
基金ThearticlesupportedfinanciallybyNationalNaturalScienceFoundationofChina (No .5 99740 2 0 )andSpecialFoundationofShaanxiEdu cationCommittee (No .99Jk2 2 0 )
文摘The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.
基金Project(2015SK20823) supported by Science and Technology Project of Hunan Province,ChinaProject(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department,China+2 种基金Project(2017CL06) supported by Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject(k1403029-11) supported by Science and Technology Project of Changsha City,ChinaProject(CX2015B372) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.
文摘The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperatures. This method can control the bias voltage of MOS transistors by memory and DAC to meet two restrictions about responsivity and offset before traditional two-point calibration is implemented. The simulation results seem that this non-uniformity correction can work at uniform substrate temperature with fluctuant range of 4K.
基金NationalNaturalScienceFoundationofChina! (No .5 99740 2 0 )
文摘On the basis of heat transfer and chemical kinetics theory, both connections coal self ignite with oxygen concentration and range of oxidation zone with air leak intensity are analyzed, and calculating method is deduced to gain the lower limit of oxygen concentration and the range of oxidation zone. The change rule of correlative parameter is quantitatively researched between before nitrogen injection and after nitrogen injection in gob, such as oxygen concentration, oxidation zone width, etc. According to theoretical calculation, the relation position and flow of nitrogen injection with oxidation zone width is conformed, and computational formulas of the best flow and position of nitrogen injection are obtained. It offers a theoretic criterion for preventing and controlling float coal self ignite by nitrogen injection in gob.
基金supported by the National Natural Science Foundation of China (50972130,20701033,51172209,91122022)Zhejiang Environmental Protection Bureau Foundation (2011B19)China Postdoctoral Science Foundation (201003048)
文摘Porous tetragonal BaTiO 3 ceramic was successfully prepared by a combination of hydrothermal and low-temperature-sintering method.The hollow TiO2@BaCO 3 as the sintering precursor was synthesized via a simple hydrothermal method,and then porous BaTiO 3 was generated by calcining the hollow TiO2@BaCO 3 precursor at 900 ℃ without additive.The hollow TiO2@BaCO 3 structure plays two important roles in the preparing of the porous BaTiO 3 ceramic.First,the TiO2@BaCO 3 hollow structure provides high surface areas and increases the contact points between BaCO 3 and TiO2,which can reduce the sintering temperature of the BaTiO 3 ceramic.Second,the cavity of the ordered arranged TiO2@BaCO 3 hollow sphere shows important influence on the porous structure,and the pore size of the as-prepared porous BaTiO 3 ceramic can be tuned from several nanometers to hundreds nanomters by changing the sintering temperature.The formation mechanism of the porous BaTiO 3 ceramic was proposed.
基金supported by the National Natural Science Foundation of China(Grant No.11025422)the National Basic Research Program of China(Grant No.2011CB921701)
文摘Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements show a phase transition at approxi- mately 114 K (TA). No splitting or broadening in the central line of 23Na NMR spectra is observed below and above the transi- tion temperature indicating no internal field being detected. The spin-lattice relaxation rate divided by T (I/T1T) shows a sharp drop at about 110 K which suggests a gap opening behavior. Below the phase transition temperature zone, I/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states (DOS) because of the gap. No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature. These results suggest a commensurate charge-density-wave (CDW) phase transition occurring.