The effects of carbon/slag molar ratio, chloride amount and temperature on equilibrium molar ratio (REq) of CO to CO2 for off-gas produced by carbochlorination of titanium slag were firstly investigated by thermodynam...The effects of carbon/slag molar ratio, chloride amount and temperature on equilibrium molar ratio (REq) of CO to CO2 for off-gas produced by carbochlorination of titanium slag were firstly investigated by thermodynamic calculation of equilibrium components of off-gas. The experimental CO/CO2 molar ratio (REx) was then obtained to be 0.2-0.3 by the carbochlorination experiment using a novel combined fluidized bed as chlorination reactor. To further investigate the reaction effect of the novel process mentioned above, REx, REq and corresponding reference data (RRe) were compared. The results indicate that REx is similar to RRe (0.5-1.2) but different from REq (≥4.3), which is consistent with anticipation of REx for the novel combined fluidized bed. The difference between REx and corresponding REq is mainly attributed to short retention time (about 1 s) of materials in combined fluidized bed and carbochlorination of oxide impurities contained in titanium slag, such as CaO, MgO and SiO2.展开更多
Rare earth oxide was prepared via direct pyrolysis of rare earth chloride solution. Based on this technique, a new-type jet-flow pyrolysis reactor was designed, and then the fluid dynamics (pressure and velocity) insi...Rare earth oxide was prepared via direct pyrolysis of rare earth chloride solution. Based on this technique, a new-type jet-flow pyrolysis reactor was designed, and then the fluid dynamics (pressure and velocity) inside the reactor was numerically simulated using a computational fluid dynamics method. The self-produced pressure (p) and the fuel inlet velocity (v) satisfied a quadratic function,p=0.06v2+0.23v?4.49. To fully utilize the combustion-generated heat in pyrolysis of rare earth chloride, an appropriate external pressure p=v2+3v?4.27 should be imposed at the feed inlet. The 1.25- and 1.5-fold increase of feed inlet diameter resulted in decline of adsorption dynamic pressure, but the intake of rare earth chloride increased by more than 30% and 60%, respectively. The fluid flow in the reactor was affected by the feeding rate; the fluid flow peaked near the throat of venturi and gradually smoothed down at the jet-flow reactor’s terminal along with the sharp decline of feeding rate.展开更多
基金Project(2008AA06Z1071) supported by the High-tech Research and Development Program of ChinaProject(20306030) supported by the National Natural Science Foundation of China
文摘The effects of carbon/slag molar ratio, chloride amount and temperature on equilibrium molar ratio (REq) of CO to CO2 for off-gas produced by carbochlorination of titanium slag were firstly investigated by thermodynamic calculation of equilibrium components of off-gas. The experimental CO/CO2 molar ratio (REx) was then obtained to be 0.2-0.3 by the carbochlorination experiment using a novel combined fluidized bed as chlorination reactor. To further investigate the reaction effect of the novel process mentioned above, REx, REq and corresponding reference data (RRe) were compared. The results indicate that REx is similar to RRe (0.5-1.2) but different from REq (≥4.3), which is consistent with anticipation of REx for the novel combined fluidized bed. The difference between REx and corresponding REq is mainly attributed to short retention time (about 1 s) of materials in combined fluidized bed and carbochlorination of oxide impurities contained in titanium slag, such as CaO, MgO and SiO2.
基金Projects(51204040,U1202274)supported by the National Natural Science Foundation of ChinaProjects(2010AA03A405,2102AA062303)supported by the National High-tech Research and Development Program of China+1 种基金Project(2012BAE01B02)supported by the National Science and Technology Support Program of ChinaProject(N130702001)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rare earth oxide was prepared via direct pyrolysis of rare earth chloride solution. Based on this technique, a new-type jet-flow pyrolysis reactor was designed, and then the fluid dynamics (pressure and velocity) inside the reactor was numerically simulated using a computational fluid dynamics method. The self-produced pressure (p) and the fuel inlet velocity (v) satisfied a quadratic function,p=0.06v2+0.23v?4.49. To fully utilize the combustion-generated heat in pyrolysis of rare earth chloride, an appropriate external pressure p=v2+3v?4.27 should be imposed at the feed inlet. The 1.25- and 1.5-fold increase of feed inlet diameter resulted in decline of adsorption dynamic pressure, but the intake of rare earth chloride increased by more than 30% and 60%, respectively. The fluid flow in the reactor was affected by the feeding rate; the fluid flow peaked near the throat of venturi and gradually smoothed down at the jet-flow reactor’s terminal along with the sharp decline of feeding rate.