Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process ...Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process of the North Pacific Subtropical Mode Water (NPSTMW) is presented for explaining the well known 'Stommel Demon'. The forming of NPSTMW reflects well the ventilation process of the isotherms of the permanent thermocline. The formation process can be divided into the 'ventilation' phase and the 'formation' phase. In the first phase (October-March), with large heat losses at the sea surface from October, the mixed layer deepens and correspondingly, the water mass with low PV emerges and sinks. After continual cooling from October to March, the mixed layer reaches its maximum value ( >300 m) in March. Then, in the second phase (April-June), the mixed layer shoals rapidly from April, a large part of the low PV water mass is sheltered from further air-sea interaction by the emerging seasonal thermocline, and thus forms new NPSTMW. Further analysis indicates that the formation region of warm NPSTMW (17-18℃) is limited between 140°-150°E, while the relatively cold NPSTMW (16-17℃) originates in a wider longitude range (140°-170°E).Climate features of NPSTMW are presented with the use of climatological Levitus (1994 a, b) dataset. It is shown that NPSTMW lies in the region of (130°-170°E, 22°-34°N) with core temperature ranging from about 16-19℃ and potential density around 25-25.8σθ NPSTMW has a three-dimensional structure lying below the seasonal thermocline (about 100 m deep) and reaches almost to 350m depths.展开更多
Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. Th...Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.展开更多
基金supported by Free Application(No.40276009)NSFC Project for Oversea Young Scientist Found(No.40028605).
文摘Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process of the North Pacific Subtropical Mode Water (NPSTMW) is presented for explaining the well known 'Stommel Demon'. The forming of NPSTMW reflects well the ventilation process of the isotherms of the permanent thermocline. The formation process can be divided into the 'ventilation' phase and the 'formation' phase. In the first phase (October-March), with large heat losses at the sea surface from October, the mixed layer deepens and correspondingly, the water mass with low PV emerges and sinks. After continual cooling from October to March, the mixed layer reaches its maximum value ( >300 m) in March. Then, in the second phase (April-June), the mixed layer shoals rapidly from April, a large part of the low PV water mass is sheltered from further air-sea interaction by the emerging seasonal thermocline, and thus forms new NPSTMW. Further analysis indicates that the formation region of warm NPSTMW (17-18℃) is limited between 140°-150°E, while the relatively cold NPSTMW (16-17℃) originates in a wider longitude range (140°-170°E).Climate features of NPSTMW are presented with the use of climatological Levitus (1994 a, b) dataset. It is shown that NPSTMW lies in the region of (130°-170°E, 22°-34°N) with core temperature ranging from about 16-19℃ and potential density around 25-25.8σθ NPSTMW has a three-dimensional structure lying below the seasonal thermocline (about 100 m deep) and reaches almost to 350m depths.
基金the Project of Outstanding Young University Teachers of Shanghai,No.03YQHB076. and R & D Fund of DonghuaUniversity
文摘Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.