Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory condi...Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory conditions of typical purple mudstone from the Tuodian group of Jurassic red beds(J3t) in Tuodian Town,Shuangbai county,Yunnan Province of southern China.The fresh mudstone was subjected to alternating applications of water,heat and hydrothermal interaction during five treatments:wetting-drying(WD),saturation(ST),refrigeration-heating(RH),a combination of wetting-drying and refrigeration-heating(WDRH),and a combination of saturation and refrigeration-heating(STRH).Each treatment was run in twenty-four cycles.The results showed that there are three types of disintegration:collapsing disintegration,exfoliation disintegration and imperceptible disintegration.The cumulative disintegration rate(percentage of cumulative disintegrated mass to the initiative sample mass passed through a 2 mm sieve) produced a 'S'-shape function when related to treatment cycle time and closely fit a logistic model(R2 > 0.99).The rank order of the cumulative disintegration rate resulting from the five treatments was as the following:WDRH > STRH > ST > WD > RH.Because of alternating periods of moisture and dryness,WD caused the most disintegration,while RH alone resulted in imperceptible disintegration.Additionally,there was a negative correlation between the disintegration rate of each treatment cycle(percentage of disintegrated mass to the treated sample mass) and treatment cycle number.There was a positive correlation between this rate and temperature change under moist conditions,indicating that a change in temperature greatly accelerates the disintegration of parent rock when water was supplied.展开更多
The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functiona...The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-1R (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m^2.g^-1 was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcusfaecalis colonies under visible irradiation, at different material doses and irradiation times.展开更多
The impact of the subtropical high (STH) on precipitation was investigated on a daily timescale using matched NCEP and the Global Precipitation Climatology Project (GPCP) datasets.Comparison of the conditional probabi...The impact of the subtropical high (STH) on precipitation was investigated on a daily timescale using matched NCEP and the Global Precipitation Climatology Project (GPCP) datasets.Comparison of the conditional probability (intensity) of precipitation under STH condi-tions with that under non-STH conditions suggests that the presence of the STH conditions has a limited impact on local precipitation.In the West Pacific Subtropical High (WPSH) and the North Atlantic Subtropical High (NASH),precipitation was only 30% lower under STH conditions than under non-STH conditions.The STH conditions had somewhat more impact on precipitation intensity,but it was still 50% less than the intensity under non-STH conditions (mean of roughly 5 mm d 1).Pre-cipitation under STH conditions was found to be highly correlated with vertical motion.Active updrafts occurring even under STH conditions are essential for frequent oc-currences and moderate intensities of precipitation.展开更多
Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two t...Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two times, respectively. Five groups of P-T experimental parameters were obtained using the data logger system and analyzed combined with the video information of the experiments. Major conclustions show that the induction time is shortened by 10-20 times in the experimental system containing residual pentahedral ring structures; "memory effect" can accelerate the dynamic progress and improve the thermodynamic conditions of gas hydrate formation.展开更多
In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Ro...In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.展开更多
Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffra...Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SIO2/A1203 molar ratio 21 25, KOH/SiO2 molar ratio 0.33 0.43, H20/SiO2 molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160℃, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.展开更多
Statistical studies were conducted on the southwest vortex(SWV) during the summers of 2000–13 using high-resolution reanalysis data with a horizontal resolution of 0.5°× 0.5°. A total of 578 SWVs were ...Statistical studies were conducted on the southwest vortex(SWV) during the summers of 2000–13 using high-resolution reanalysis data with a horizontal resolution of 0.5°× 0.5°. A total of 578 SWVs were detected, with a maximum interannual frequency of 55. The variation of the interannual frequency featured a period of around six years. The most active period of SWVs was early July and the maximum occurrence of SWVs appeared in early morning(0200–0800 Beijing Standard Time(BST)). Most of the SWVs were short-lived, with only 66 cases(11.4%) lasting for more than 24 h. In addition, the moving tracks and three-dimensional shape of long-lived(≥ 36 h) SWVs are also presented. For those SWVs that lasted for more than 12 h, four types of SWVs(Types I–IV) were identified using a new method, and the results indicated that the dynamical and thermodynamical conditions before the formation of SWVs are effective indicators of the subsequent evolution of the vortex and associated severe weathers. Moreover, a further level of classification was also constructed for Type II SWVs, which accounted for the largest proportion out of Types I–IV, and the results indicated that the lifespan, radius and maximum 6-h precipitation were all closely related to the intensity of precipitation before the formation of SWVs.展开更多
Vacuum insulation panels provide unprecedented possibilities for renovating the existing building stock in a manner that reduces the thermal losses through the building envelope. This study is focused on the implement...Vacuum insulation panels provide unprecedented possibilities for renovating the existing building stock in a manner that reduces the thermal losses through the building envelope. This study is focused on the implementation of VIPs (vacuum insulation panels) in energy retrofit projects with rendered outer walls. Particular emphasis is put on reducing the thermal bridges due to mechanical fasteners and at the joints of the panels. These are evaluated through a parametric study of the impact of the thermal conductivity of the joints of the panels and the adjacent insulation layer as well as the material of the fasteners. The study is carried out with 3D FEM (finite element method) simulations software. Furthermore, the moisture conditions in the construction are studied. The dynamic moisture behavior of a wall construction is modeled with a two dimensional FEM model. The long term effects of vapor diffusion are investigated in terms of accumulated moisture and the risk of condensation. The results illustrate that vacuum insulation on the outside of the wall construction does not pose a moisture problem to the construction. The simulations are based on a draft of a new technical solution for the refurbishment of a building that is typical for the great Swedish building program of the 1970s.展开更多
Temperature effect (200-400 ℃) on the anisotropic crystal growth of boehmite under hydrothermal conditions with and without octanoic acid was investigated. The crystallinity and the size of particles increased with...Temperature effect (200-400 ℃) on the anisotropic crystal growth of boehmite under hydrothermal conditions with and without octanoic acid was investigated. The crystallinity and the size of particles increased with increasing the treatment temperature. The crystal growth was facilitated greatly above the critical temperature of water. Although several possible factors could affect the crystal growth behavior, the experimental results were discussed in terms of water properties, such as dielectric constant and viscosity The crystallization was enhanced when the viscosity and dielectric constant of water were low. The viscosity reduction at higher temperature may enhance diffusion and crystallization, in particular, without octanoic acid. The enhancement of crystallization at lower dielectric constant implies that the formation of particles, which are less polar than precursor ions, favorably proceeds in such media. The crystal growth along c-axis showed less temperature dependence around the critical temperature in the experiments with octanoic acid, which suggests that the modification reaction on the (001) surface was also facilitated because the modification reaction forms less polar products. This is probably the reason why the aspect ratio (a/c) was considerably higher for the products obtained with the treatments above the critical temperature.展开更多
The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within...The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.展开更多
Two new miniature metallic sealed-cells containing the triple point of water, WTP (273.16 K) and the triple point of mercury, HgTP (234.3156 K) have been constructed for the realization of the International Temper...Two new miniature metallic sealed-cells containing the triple point of water, WTP (273.16 K) and the triple point of mercury, HgTP (234.3156 K) have been constructed for the realization of the International Temperature Scale of 1990 (ITS-90) at the National Institute of Standards (NIS-Egypt). The two new cells, in addition to a previously realized argon and oxygen triple point cells, will provide facilities for the calibration of capsule-type standard platinum resistance thermometers (CSPRTs) at one single run. Many phase transition plateaux were carried out and compared to the laboratory large reference cells using the same thermometers in order to test the performance of the new cell.展开更多
Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. Th...Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate.展开更多
A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by...A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by powder X-ray diffraction, scanning electron microscopy, energy-disperse X-ray spectroscopy, and dc susceptibility, and the factors that affected the crystallization were discussed. It was found that the purity of products depends strongly on the raw materials and the amount of alkalinity in the initial reaction mixtures. The ZFC and FC susceptibilities of all of the compounds R2Ru2O7 at low temperature were also measured and discussed.展开更多
The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300 ℃. The yield of al...The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300 ℃. The yield of alcohols was considerably higher at a much lower ratio of hydrogen source to ketones than the traditional Meerwein-Ponndorf-Verley (MPV) reduction, reaching 60% for isopropanol from acetone and 70% for lactic acid from pyruvic acid. Water molecules may act as a catalyst in the hydrogen transfer reduction of ketones under hydrothermal conditions.展开更多
Two manganese phosphonates Mn3(4-piH)2(H2O)3·H2O (1) and Mns(4-piH)2(4-piH2)2(phen)2(H2O)4 (2) (4-pill4 = 4-phosphonoisophthalic acid, phen = 1,10-phenanthroline) have been synthesized under hyd...Two manganese phosphonates Mn3(4-piH)2(H2O)3·H2O (1) and Mns(4-piH)2(4-piH2)2(phen)2(H2O)4 (2) (4-pill4 = 4-phosphonoisophthalic acid, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions in the pres- ence of organic co-ligand. Both compounds exhibit layer structures but with different topologies. In compound 1, a complicated "ladder-like" chain of {Mn3O3}O2 which contains three- and six-member rings made up of triangular shaped {Mn3O3} tri- mers is found. The chains are linked by the PO3C groups to form an inorganic layer. The phenyl and protonated carboxylate groups are pendent between the layers with extensive hydrogen bonds. In compound 2, tetramers of {MnnO6 } are connected by the { MnO6 } octahedra through corner-sharing to form an infinite chain, which is further bridged by 4-pill3- ligands into a thick hybrid layer. Magnetic measurements reveal that antiferromagnetic interactions are dominant in both compounds. Metamag- netism is observed in compound 1 at low temperature, while no long range ordering is found in compound 2 down to 1.8 K.展开更多
Based on the daily observation data of 824 meteorological stations during 1951-2010 released by the National Meteorological Information Center, this paper evaluated the changes in the heat and moisture conditions of c...Based on the daily observation data of 824 meteorological stations during 1951-2010 released by the National Meteorological Information Center, this paper evaluated the changes in the heat and moisture conditions of crop growth. An average value of ten years was used to analyze the spatio-temporal variation in the agricultural hydrothermal conditions within a 1 km2 grid. Next, the inter-annual changing trend was simulated by regression analysis of the agricultural hydrothermal conditions. The results showed that the contour lines for temperature and accumulated temperatures(the daily mean temperature ≥0°C) increased significantly in most parts of China, and that the temperature contour lines had all moved northwards over the past 60 years. At the same time, the annual precipitation showed a decreasing trend, though more than half of the meteorological stations did not pass the significance test. However, the mean temperatures in the hottest month and the coldest month exhibited a decreasing trend from 1951 to 2010. In addition, the 0°C contour line gradually moved from the Qinling Mountains and Huaihe River Basin to the Yellow River Basin. All these changes would have a significant impact on the distribution of crops and farming systems. Although the mechanisms influencing the interactive temperature and precipitation changes on crops were complex and hard to distinguish, the fact remained that these changes would directly cause corresponding changes in crop characteristics.展开更多
Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer perfor...Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load(i.e. 60 W) and with the LHP being inclined 60 to the horizontal plane, the total thermal resistance is lowered to be ~0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90 C.展开更多
Solar evaporation has emerged as an attractive technology to produce freshwater by utilizing renewable solar energy.However,it remains a huge challenge to develop efficient solar steam generators with good flexibility...Solar evaporation has emerged as an attractive technology to produce freshwater by utilizing renewable solar energy.However,it remains a huge challenge to develop efficient solar steam generators with good flexibility,low cost and remarkable salt resistance.Herein,we prepare flexible,robust solar membranes by filtration of porous carbon and commercial paper pulp fiber.The porous carbon with well-defined structures is prepared through controlled carbonization of biomass/waste plastics by eutectic salts.We prove the synergistic effect of porous carbon and paper pulp fiber in boosting solar evaporation performance.Firstly,the porous carbon displays a high light absorption,while the paper pulp fiber with good hydrophilicity effectively promotes the transport of water.Secondly,the combination between porous carbon and paper pulp fiber reduces the water vaporization enthalpy by 20%,which is important to significantly improve the evaporation performance.As a proof of concept,the porous carbon/paper pulp fiber membrane possesses a high evaporation rate of 1.8 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation.Thirdly,the good flexibility and mechanical property of paper pulp fiber enable the solar membrane to work well under extreme conditions(e.g.,after 20 cycles of folding/stretching/recovery).Lastly,due to the super-hydrophilicity and superwetting,the hybrid membrane exhibits the exceptional salt resistance and long-term stability in continuous seawater desalination,e.g.,for 50 h.Importantly,a large-scale solar desalination device for outdoor experiments is developed to produce freshwater.Consequently,this work provides a new insight into developing advanced flexible solar evaporators with superb performance in seawater desalination.展开更多
基金supported by National Natural Science Foundation of China (Grant No.40971168)National Basic Research Program of China (973 Program) (Grant No. 2007CB407206)
文摘Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory conditions of typical purple mudstone from the Tuodian group of Jurassic red beds(J3t) in Tuodian Town,Shuangbai county,Yunnan Province of southern China.The fresh mudstone was subjected to alternating applications of water,heat and hydrothermal interaction during five treatments:wetting-drying(WD),saturation(ST),refrigeration-heating(RH),a combination of wetting-drying and refrigeration-heating(WDRH),and a combination of saturation and refrigeration-heating(STRH).Each treatment was run in twenty-four cycles.The results showed that there are three types of disintegration:collapsing disintegration,exfoliation disintegration and imperceptible disintegration.The cumulative disintegration rate(percentage of cumulative disintegrated mass to the initiative sample mass passed through a 2 mm sieve) produced a 'S'-shape function when related to treatment cycle time and closely fit a logistic model(R2 > 0.99).The rank order of the cumulative disintegration rate resulting from the five treatments was as the following:WDRH > STRH > ST > WD > RH.Because of alternating periods of moisture and dryness,WD caused the most disintegration,while RH alone resulted in imperceptible disintegration.Additionally,there was a negative correlation between the disintegration rate of each treatment cycle(percentage of disintegrated mass to the treated sample mass) and treatment cycle number.There was a positive correlation between this rate and temperature change under moist conditions,indicating that a change in temperature greatly accelerates the disintegration of parent rock when water was supplied.
基金Supported by the Sectoral Operational Programme Human Resources Development(SOP HRD)Financed from the European Social Fundthe Romanian Government under the Contract Number POSDRU/89/1.5/S/63700
文摘The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-1R (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m^2.g^-1 was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcusfaecalis colonies under visible irradiation, at different material doses and irradiation times.
基金supported by Special Funds for Public Welfare of China (Grant No.GYHY-QX-2007)the National Natural Science Foundation of China (Grant Nos.40730950,40675027,and 40805007)
文摘The impact of the subtropical high (STH) on precipitation was investigated on a daily timescale using matched NCEP and the Global Precipitation Climatology Project (GPCP) datasets.Comparison of the conditional probability (intensity) of precipitation under STH condi-tions with that under non-STH conditions suggests that the presence of the STH conditions has a limited impact on local precipitation.In the West Pacific Subtropical High (WPSH) and the North Atlantic Subtropical High (NASH),precipitation was only 30% lower under STH conditions than under non-STH conditions.The STH conditions had somewhat more impact on precipitation intensity,but it was still 50% less than the intensity under non-STH conditions (mean of roughly 5 mm d 1).Pre-cipitation under STH conditions was found to be highly correlated with vertical motion.Active updrafts occurring even under STH conditions are essential for frequent oc-currences and moderate intensities of precipitation.
文摘Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two times, respectively. Five groups of P-T experimental parameters were obtained using the data logger system and analyzed combined with the video information of the experiments. Major conclustions show that the induction time is shortened by 10-20 times in the experimental system containing residual pentahedral ring structures; "memory effect" can accelerate the dynamic progress and improve the thermodynamic conditions of gas hydrate formation.
基金Supported by the National Natural Science Foundation of China (No. 20490207, No. 20176028, No. 90210020) and Huo Ying-dong Education Foundation (No. 81064)
文摘In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.
基金Supported by the National Natural Science Foundation of China(20976084,21101094,21136005)
文摘Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SIO2/A1203 molar ratio 21 25, KOH/SiO2 molar ratio 0.33 0.43, H20/SiO2 molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160℃, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.
基金supported by a project of the Chengdu Institute of Plateau Meteorology, CMA (Grant No. LPM2011006)the State Grid Science & Technology Project (GC71-13-007)the National Natural Science Foundation of China (Grant Nos. 41205027, 41375053, and 41375058)
文摘Statistical studies were conducted on the southwest vortex(SWV) during the summers of 2000–13 using high-resolution reanalysis data with a horizontal resolution of 0.5°× 0.5°. A total of 578 SWVs were detected, with a maximum interannual frequency of 55. The variation of the interannual frequency featured a period of around six years. The most active period of SWVs was early July and the maximum occurrence of SWVs appeared in early morning(0200–0800 Beijing Standard Time(BST)). Most of the SWVs were short-lived, with only 66 cases(11.4%) lasting for more than 24 h. In addition, the moving tracks and three-dimensional shape of long-lived(≥ 36 h) SWVs are also presented. For those SWVs that lasted for more than 12 h, four types of SWVs(Types I–IV) were identified using a new method, and the results indicated that the dynamical and thermodynamical conditions before the formation of SWVs are effective indicators of the subsequent evolution of the vortex and associated severe weathers. Moreover, a further level of classification was also constructed for Type II SWVs, which accounted for the largest proportion out of Types I–IV, and the results indicated that the lifespan, radius and maximum 6-h precipitation were all closely related to the intensity of precipitation before the formation of SWVs.
文摘Vacuum insulation panels provide unprecedented possibilities for renovating the existing building stock in a manner that reduces the thermal losses through the building envelope. This study is focused on the implementation of VIPs (vacuum insulation panels) in energy retrofit projects with rendered outer walls. Particular emphasis is put on reducing the thermal bridges due to mechanical fasteners and at the joints of the panels. These are evaluated through a parametric study of the impact of the thermal conductivity of the joints of the panels and the adjacent insulation layer as well as the material of the fasteners. The study is carried out with 3D FEM (finite element method) simulations software. Furthermore, the moisture conditions in the construction are studied. The dynamic moisture behavior of a wall construction is modeled with a two dimensional FEM model. The long term effects of vapor diffusion are investigated in terms of accumulated moisture and the risk of condensation. The results illustrate that vacuum insulation on the outside of the wall construction does not pose a moisture problem to the construction. The simulations are based on a draft of a new technical solution for the refurbishment of a building that is typical for the great Swedish building program of the 1970s.
文摘Temperature effect (200-400 ℃) on the anisotropic crystal growth of boehmite under hydrothermal conditions with and without octanoic acid was investigated. The crystallinity and the size of particles increased with increasing the treatment temperature. The crystal growth was facilitated greatly above the critical temperature of water. Although several possible factors could affect the crystal growth behavior, the experimental results were discussed in terms of water properties, such as dielectric constant and viscosity The crystallization was enhanced when the viscosity and dielectric constant of water were low. The viscosity reduction at higher temperature may enhance diffusion and crystallization, in particular, without octanoic acid. The enhancement of crystallization at lower dielectric constant implies that the formation of particles, which are less polar than precursor ions, favorably proceeds in such media. The crystal growth along c-axis showed less temperature dependence around the critical temperature in the experiments with octanoic acid, which suggests that the modification reaction on the (001) surface was also facilitated because the modification reaction forms less polar products. This is probably the reason why the aspect ratio (a/c) was considerably higher for the products obtained with the treatments above the critical temperature.
文摘The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.
文摘Two new miniature metallic sealed-cells containing the triple point of water, WTP (273.16 K) and the triple point of mercury, HgTP (234.3156 K) have been constructed for the realization of the International Temperature Scale of 1990 (ITS-90) at the National Institute of Standards (NIS-Egypt). The two new cells, in addition to a previously realized argon and oxygen triple point cells, will provide facilities for the calibration of capsule-type standard platinum resistance thermometers (CSPRTs) at one single run. Many phase transition plateaux were carried out and compared to the laboratory large reference cells using the same thermometers in order to test the performance of the new cell.
基金provided by the NSFC-Guangdong Joint Science Foundation of China (Grant No. U0933004)the National Basic Research Program of China (Grant No. 2009CB219504)+3 种基金the National Natural Science Foundation of China (Grant No. 51206169)the National Oceanic Geological Special Projects (Grant No. GHZ2012006003)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KGZD-EW-3)the National High Technology Research and Development Program of China (Grant No. 2012AA061403-03)
文摘Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate.
基金supported by the National Natural Science Foundation of China (90922034)
文摘A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by powder X-ray diffraction, scanning electron microscopy, energy-disperse X-ray spectroscopy, and dc susceptibility, and the factors that affected the crystallization were discussed. It was found that the purity of products depends strongly on the raw materials and the amount of alkalinity in the initial reaction mixtures. The ZFC and FC susceptibilities of all of the compounds R2Ru2O7 at low temperature were also measured and discussed.
基金supported by the State Key Laboratory of Pollution Control and Resources Reuse in China (Tongji University) (No. PCRRK08002)the National Key Technology R&D Program of China (No. 2008BAJ08B13)the Shanghai Pujiang Elitist Program of China (No. 07pj14083)
文摘The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300 ℃. The yield of alcohols was considerably higher at a much lower ratio of hydrogen source to ketones than the traditional Meerwein-Ponndorf-Verley (MPV) reduction, reaching 60% for isopropanol from acetone and 70% for lactic acid from pyruvic acid. Water molecules may act as a catalyst in the hydrogen transfer reduction of ketones under hydrothermal conditions.
基金supported by the National Natural Science Foundation of China (90922006)the Natural Science Foundation of Jiangsu Province (BK2009009)
文摘Two manganese phosphonates Mn3(4-piH)2(H2O)3·H2O (1) and Mns(4-piH)2(4-piH2)2(phen)2(H2O)4 (2) (4-pill4 = 4-phosphonoisophthalic acid, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions in the pres- ence of organic co-ligand. Both compounds exhibit layer structures but with different topologies. In compound 1, a complicated "ladder-like" chain of {Mn3O3}O2 which contains three- and six-member rings made up of triangular shaped {Mn3O3} tri- mers is found. The chains are linked by the PO3C groups to form an inorganic layer. The phenyl and protonated carboxylate groups are pendent between the layers with extensive hydrogen bonds. In compound 2, tetramers of {MnnO6 } are connected by the { MnO6 } octahedra through corner-sharing to form an infinite chain, which is further bridged by 4-pill3- ligands into a thick hybrid layer. Magnetic measurements reveal that antiferromagnetic interactions are dominant in both compounds. Metamag- netism is observed in compound 1 at low temperature, while no long range ordering is found in compound 2 down to 1.8 K.
基金National Basic Program of China(973 Program),No.2012CB955800National Natural Science Foundation of China,No.41171438,No.41401504
文摘Based on the daily observation data of 824 meteorological stations during 1951-2010 released by the National Meteorological Information Center, this paper evaluated the changes in the heat and moisture conditions of crop growth. An average value of ten years was used to analyze the spatio-temporal variation in the agricultural hydrothermal conditions within a 1 km2 grid. Next, the inter-annual changing trend was simulated by regression analysis of the agricultural hydrothermal conditions. The results showed that the contour lines for temperature and accumulated temperatures(the daily mean temperature ≥0°C) increased significantly in most parts of China, and that the temperature contour lines had all moved northwards over the past 60 years. At the same time, the annual precipitation showed a decreasing trend, though more than half of the meteorological stations did not pass the significance test. However, the mean temperatures in the hottest month and the coldest month exhibited a decreasing trend from 1951 to 2010. In addition, the 0°C contour line gradually moved from the Qinling Mountains and Huaihe River Basin to the Yellow River Basin. All these changes would have a significant impact on the distribution of crops and farming systems. Although the mechanisms influencing the interactive temperature and precipitation changes on crops were complex and hard to distinguish, the fact remained that these changes would directly cause corresponding changes in crop characteristics.
基金supported by the Guangdong Science and Technology Project(2012A080304002)the CAS Key Laboratory of Renew-able Energy Foundation(y207j7)+2 种基金the Zhuhai Science and Technology Project(2012D0501990019)the Guangzhou Science and Technology Project(2013J4300001)the CAS"100 Talents"Program(FJ)
文摘Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load(i.e. 60 W) and with the LHP being inclined 60 to the horizontal plane, the total thermal resistance is lowered to be ~0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90 C.
基金financially supported by the National Natural Science Foundation of China(51903099 and 51991353)Huazhong University of Science and Technology(3004013134 and 2021XXJS036)+1 种基金the 100 Talents Program of the Hubei Provincial Governmentthe Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003).
文摘Solar evaporation has emerged as an attractive technology to produce freshwater by utilizing renewable solar energy.However,it remains a huge challenge to develop efficient solar steam generators with good flexibility,low cost and remarkable salt resistance.Herein,we prepare flexible,robust solar membranes by filtration of porous carbon and commercial paper pulp fiber.The porous carbon with well-defined structures is prepared through controlled carbonization of biomass/waste plastics by eutectic salts.We prove the synergistic effect of porous carbon and paper pulp fiber in boosting solar evaporation performance.Firstly,the porous carbon displays a high light absorption,while the paper pulp fiber with good hydrophilicity effectively promotes the transport of water.Secondly,the combination between porous carbon and paper pulp fiber reduces the water vaporization enthalpy by 20%,which is important to significantly improve the evaporation performance.As a proof of concept,the porous carbon/paper pulp fiber membrane possesses a high evaporation rate of 1.8 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation.Thirdly,the good flexibility and mechanical property of paper pulp fiber enable the solar membrane to work well under extreme conditions(e.g.,after 20 cycles of folding/stretching/recovery).Lastly,due to the super-hydrophilicity and superwetting,the hybrid membrane exhibits the exceptional salt resistance and long-term stability in continuous seawater desalination,e.g.,for 50 h.Importantly,a large-scale solar desalination device for outdoor experiments is developed to produce freshwater.Consequently,this work provides a new insight into developing advanced flexible solar evaporators with superb performance in seawater desalination.