A new type of hierarchical ZnSnO3-SnO2 flower-shaped nanostructure composed of thin nanoflakes as secondary units is successfully prepared through a simple hydrothermal process. The polyhedral ZnSnO3 core acts as a sa...A new type of hierarchical ZnSnO3-SnO2 flower-shaped nanostructure composed of thin nanoflakes as secondary units is successfully prepared through a simple hydrothermal process. The polyhedral ZnSnO3 core acts as a sacrificed template for the growth of hierarchical SnO2 nanoflakes, and the average thickness of SnO2 nanoflakes is around 25 nm. The time-dependent morphology evolution of ZnSnO3-SnO2 samples was investigated, and a possible formation mechanism of these hierarchical structures is discussed. The gas sensor based on these novel ZnSnO3-SnO2 nanostructures exhibits high response and quick response- recovery traits to ethanol (C2H5OH). It is found that ZnSnO3-SnO2 nanoflakes have a response of 27.8 to 50×10-6 C2H5OH at the optimal operating temperature of 270 °C, and the response and recovery time are within 1.0 and 1.8 s, respectively.展开更多
Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two t...Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two times, respectively. Five groups of P-T experimental parameters were obtained using the data logger system and analyzed combined with the video information of the experiments. Major conclustions show that the induction time is shortened by 10-20 times in the experimental system containing residual pentahedral ring structures; "memory effect" can accelerate the dynamic progress and improve the thermodynamic conditions of gas hydrate formation.展开更多
Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent ...Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.展开更多
An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehen...An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.展开更多
Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. Th...Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate.展开更多
The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and s...The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and seawater (δSDn2O=-4.8‰) added, respectively. The experimental results show that the productivities of H2 and CO2 obviously increased under hydrous conditions and that the productivity of CH4 also remarkably increased in the high-evolution phase of hydrous experiments. Water was involved in the chemical reaction of hydrocarbon generation, and then the hydrogen isotopic composition of methane was affected. There is a linear correlation between the hydrogen isotopic composition of methane and its productivity, as reflected in the three series of experiments. In the case of the same CH4 productivity, the hydrogen isotopic composition of the methane produced in anhydrous experiments was the heaviest, that of the methane produced in seawater-adding experiments came second, and that of the methane produced in deionized water-adding experiments was the ligbtest. The hydrogen isotopic composition of natural gas/methane is affected by the following factors: 1) the characteristics of hydrogen isotopic composition of organic matter in source rocks, 2) the thermal evolution extent of organic matter, and 3) fossil-water media in the natural gas-generation period. The experimental results show that the influence of the fossil-water medium in the natural gas-generation period was lower than that of the other factors.展开更多
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilib...The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.展开更多
基金Projects (50832001, 51002014) supported by the National Natural Science Foundation of ChinaProject (20110491319) supported by China Postdoctoral Science Foundation
文摘A new type of hierarchical ZnSnO3-SnO2 flower-shaped nanostructure composed of thin nanoflakes as secondary units is successfully prepared through a simple hydrothermal process. The polyhedral ZnSnO3 core acts as a sacrificed template for the growth of hierarchical SnO2 nanoflakes, and the average thickness of SnO2 nanoflakes is around 25 nm. The time-dependent morphology evolution of ZnSnO3-SnO2 samples was investigated, and a possible formation mechanism of these hierarchical structures is discussed. The gas sensor based on these novel ZnSnO3-SnO2 nanostructures exhibits high response and quick response- recovery traits to ethanol (C2H5OH). It is found that ZnSnO3-SnO2 nanoflakes have a response of 27.8 to 50×10-6 C2H5OH at the optimal operating temperature of 270 °C, and the response and recovery time are within 1.0 and 1.8 s, respectively.
文摘Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two times, respectively. Five groups of P-T experimental parameters were obtained using the data logger system and analyzed combined with the video information of the experiments. Major conclustions show that the induction time is shortened by 10-20 times in the experimental system containing residual pentahedral ring structures; "memory effect" can accelerate the dynamic progress and improve the thermodynamic conditions of gas hydrate formation.
基金the Iran Nanotechnology Initiative Council for the financial and other supports
文摘Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.
基金Project(NR2013K04) supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,ChinaProject(20130909) supported by the Higher School Science and Technology Development Fund of Tianjin,China
文摘An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.
基金provided by the NSFC-Guangdong Joint Science Foundation of China (Grant No. U0933004)the National Basic Research Program of China (Grant No. 2009CB219504)+3 种基金the National Natural Science Foundation of China (Grant No. 51206169)the National Oceanic Geological Special Projects (Grant No. GHZ2012006003)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KGZD-EW-3)the National High Technology Research and Development Program of China (Grant No. 2012AA061403-03)
文摘Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate.
基金supported jointly by National Natural Science Foundation of China (Grant No. 40703001) the "Western Doctors’ Project under the Western Light Program" sponsored by the Chinese Academy of Sciences
文摘The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and seawater (δSDn2O=-4.8‰) added, respectively. The experimental results show that the productivities of H2 and CO2 obviously increased under hydrous conditions and that the productivity of CH4 also remarkably increased in the high-evolution phase of hydrous experiments. Water was involved in the chemical reaction of hydrocarbon generation, and then the hydrogen isotopic composition of methane was affected. There is a linear correlation between the hydrogen isotopic composition of methane and its productivity, as reflected in the three series of experiments. In the case of the same CH4 productivity, the hydrogen isotopic composition of the methane produced in anhydrous experiments was the heaviest, that of the methane produced in seawater-adding experiments came second, and that of the methane produced in deionized water-adding experiments was the ligbtest. The hydrogen isotopic composition of natural gas/methane is affected by the following factors: 1) the characteristics of hydrogen isotopic composition of organic matter in source rocks, 2) the thermal evolution extent of organic matter, and 3) fossil-water media in the natural gas-generation period. The experimental results show that the influence of the fossil-water medium in the natural gas-generation period was lower than that of the other factors.
基金supported by the National Natural Science Foundation of China(51106163)the National Basic Research Program of China (2009CB219504)the Joint Funds of NSFC with the Government of Guangdong Province(U0933004)
文摘The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.