期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Early-stage mineralization of hydrothermal tubeworms: New insights into the role of microorganisms in the process of mineralization 被引量:3
1
作者 PENG XiaoTong ZHOU HuaiYang +3 位作者 TANG Song YAO HuiQiang JIANG Lei WU Zidun 《Chinese Science Bulletin》 SCIE EI CAS 2008年第2期251-261,共11页
As an important part of marine hydrothermal system, hydrothermal vent faunas live in hydrothermal inorganic environment and closely interact with hydrothermal inorganic environment. Sometimes, they can participate in ... As an important part of marine hydrothermal system, hydrothermal vent faunas live in hydrothermal inorganic environment and closely interact with hydrothermal inorganic environment. Sometimes, they can participate in the mineralization process of modern hydrothermal site. Hydrothermal vent faunas, particularly vestimentiferan and polychaete tubeworms, are occasionally preserved in the geological record. Study on the early mineralization process of hydrothermal vent fauna is significant for under- standing the interaction between mineral and organism, and also the formation and preservation mechanism of geological fossil in hydrothermal environment. In this paper, the early stage of miner- alization of Vestimentiferan Ridgeia piscesae tubes collected from Juan de Fuca Ridge is studied. The results showed that a lot of filamentous microorganisms were unevenly distributed on the surface of internal wall and in the interspace of the wall of tubeworm. In some cases, microorganisms aggregated as thin layers in or on the wall of tubeworm. The surfaces of microbial cells and the products of micro- bial degradation may play an important role in the early mineralization of tubeworm. Semitransparent thin layers of organic matter containing sulfur and sulfur granules were commonly found on the wall of tubeworm with lower degree of mineralization. The degradation production of these semitransparent thin layers may accelerate the mineralization of tube wall during the early stage. EDS results showed that on the tube walls some chemical elements such as Fe, P, Ca and Si are selectively enriched from ambient hydrothermal environment. Interestingly, P, Ca and Si covary with Fe content. Because element S originated from the bio-oxidation of H2S by symbiotic microorganism in the tissue of tubeworm, it can be considered as a biomarker when studying the mineralization process of tube wall. Based on the characteristics of tubeworms with different degrees of mineralization, we suggested that the early mineralization stage of tube wall was mainly controlled by microbial-induced mineralization and the degradation process of tube wall. 展开更多
关键词 生物矿化 热水通气口 微生物 无机环境
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部