A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water whe...Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.展开更多
Based on the Chinese National Standards involving heat pump water heater and space heating system, performances of the R744/R290 subcritical heat pump system have been discussed and compared with those of the R22 syst...Based on the Chinese National Standards involving heat pump water heater and space heating system, performances of the R744/R290 subcritical heat pump system have been discussed and compared with those of the R22 system, which is widely used in heat pump systems in China nowadays. It can be indicated that R744/R290 mixture can work efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of R290 is increased, discharge pressure is reduced. Under the nominal working condition, there is an optimum mixture mass fraction of 20/80 for R744/R290 under conventional condensation pressure. Both the heating COPhs (coefficient of performance) and volumetric heating capacity are increased by about 12.62% and 34.24% respectively compared with those of R22 based system. But for the heat sink with a small temperature rise, R744/R290 system has poorer performances than R22 system. When heat transfer pinch point in evaporator and condensation processes is considered, the degree of superheat has a negative influence upon system performances under the given conditions.展开更多
The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature fiel...The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature field and velocity field in the device were obtained. The performance of the liquid-desiccant evaporator was studied as the concentration of the inlet solution varied between 21% and 30% and the pipe wall temperature between 30 and 50 ℃. Results show that the humidification rate and the humidification efficiency increased with the inlet air temperature, the solution flow rate, the solution temperature, and the pipe wall temperature. The humidification rate and humidification efficiency decreased with increasing moisture content in inlet air and the concentration of inlet solution. The humidification rate increased substantially but the humidification efficiency decreased as the inlet air flow rate increased. The error between the simulations and experimental results is acceptable, meaning that our model can provide a theoretical basis for optimizing the performance of a humidifying evaporator.展开更多
In this study the performance of an ASHPWH (air source heat pump water heater) is assessed from exergy point of view in component wise. In order to investigate the work potential of energy, the destruction on the ex...In this study the performance of an ASHPWH (air source heat pump water heater) is assessed from exergy point of view in component wise. In order to investigate the work potential of energy, the destruction on the exergy is analyzed and results are summarized for the components individually. The exergy destruction of the system is studied by considering real paths of the pressure and temperature data which are collected during the experiments of the ASHPWH under varying environmental conditions. In the following step, the evolution of the exergy destruction of the system is calculated by a code which is compiled on MATLAB along these temperature and pressure paths. The obtained results reveal the importance of the transient exergy analysis by providing detailed information about exergy destruction of the system such as where it drives up and reaches up to its max and where it drops down and evolves on a smooth path.展开更多
This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP...This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP units by using the probe insertion method. There is a tendency to decrease energy efficiency compared to a high loading factor. GHP operation was almost all part load operation. This on-site evaluation indicates a clear difference between conventional and improved GHP.展开更多
The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, express...The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.展开更多
Most commercial and industrial facilities require very low temperatures for refrigeration and high temperatures for space heating and hot water purposes. Single stage heat pumps have not been able to meet these temper...Most commercial and industrial facilities require very low temperatures for refrigeration and high temperatures for space heating and hot water purposes. Single stage heat pumps have not been able to meet these temperature demands and have been characterized by low capacities and coefficient of performance(COP). Cascade heat pump has been developed to overcome the weaknesses of single stage heat pumps. This study reviews recent works done by researchers on cascade heat pumps for refrigeration, heating and hot water generation. Selection of suitable refrigerants to meet the pressure and temperature demands of each stage of the cascade heat pump has been discussed. Optimization of design parameters such as intermediate temperature(low stage condensing and high stage evaporating temperatures), and temperature difference in the cascade heat exchanger for optimum performance of the cascade heat pump has been reviewed. It was found that optimising each design parameter of the cascade heat pump is necessary for maximum system performance and this may improve the exergetic efficiency, especially of cascade refrigeration systems, by about 30.88%. Cascade heat pumps have wider range of application especially for artificial snow production, in the supermarkets,for natural gas liquefaction, in drying clothes and food and as heat recovery system. The performance of cascade heat pumps can be improved by 19% when coupled with other renewable energy sources for various real time applications. Also, there is the need for much research on refrigerant charge amount of cascade heat pumps, refrigerant-refrigerant heat exchangers to be used as cascade heat exchanger, cascade heat pumps for simultaneous cooling, heating and hot water generation and on the use of variable speed compressors and their control strategies in matching system capacity especially at part load conditions.展开更多
This study presents the performance of a new single-stage scroll compressor used for the heat pump drying of thermally sensitive materials over a wide temperature range. The performance of the new compressor was predi...This study presents the performance of a new single-stage scroll compressor used for the heat pump drying of thermally sensitive materials over a wide temperature range. The performance of the new compressor was predicted by an ARI standard 540 map-based compressor model and verified by a semi-open drying heat pump system constructed for this purpose. A comparison of the experimental data with the predicted data proved that the new scroll compressor used in the drying heat pump works well, can supply a wide range of condensing temperatures (30--80℃) (without auxiliary heating), and has a minimum coeffi- cient of performance (COP) above 2.0, even in the worst condition.展开更多
A simple model for the desorption and absorption process of the chemical heat pump is presented in this paper, It is based on the assumption of a definite reaction front. The results from m this model are compared wit...A simple model for the desorption and absorption process of the chemical heat pump is presented in this paper, It is based on the assumption of a definite reaction front. The results from m this model are compared with those obtained by finite difference method and it is observed that there is almost no difference between them.展开更多
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
基金Supported by Major State Basic Research Development Program of China ("973" Program, No. 2009CB219907)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0936)
文摘Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.
文摘Based on the Chinese National Standards involving heat pump water heater and space heating system, performances of the R744/R290 subcritical heat pump system have been discussed and compared with those of the R22 system, which is widely used in heat pump systems in China nowadays. It can be indicated that R744/R290 mixture can work efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of R290 is increased, discharge pressure is reduced. Under the nominal working condition, there is an optimum mixture mass fraction of 20/80 for R744/R290 under conventional condensation pressure. Both the heating COPhs (coefficient of performance) and volumetric heating capacity are increased by about 12.62% and 34.24% respectively compared with those of R22 based system. But for the heat sink with a small temperature rise, R744/R290 system has poorer performances than R22 system. When heat transfer pinch point in evaporator and condensation processes is considered, the degree of superheat has a negative influence upon system performances under the given conditions.
基金Project(2016YFC0700100) supported by the National Key R&D Program of ChinaProject(JDJQ20160103) supported by Promotion of the Connotation Development Quota Project of Colleges and Universities-Outstanding Youth of Architectural University,China
文摘The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature field and velocity field in the device were obtained. The performance of the liquid-desiccant evaporator was studied as the concentration of the inlet solution varied between 21% and 30% and the pipe wall temperature between 30 and 50 ℃. Results show that the humidification rate and the humidification efficiency increased with the inlet air temperature, the solution flow rate, the solution temperature, and the pipe wall temperature. The humidification rate and humidification efficiency decreased with increasing moisture content in inlet air and the concentration of inlet solution. The humidification rate increased substantially but the humidification efficiency decreased as the inlet air flow rate increased. The error between the simulations and experimental results is acceptable, meaning that our model can provide a theoretical basis for optimizing the performance of a humidifying evaporator.
文摘In this study the performance of an ASHPWH (air source heat pump water heater) is assessed from exergy point of view in component wise. In order to investigate the work potential of energy, the destruction on the exergy is analyzed and results are summarized for the components individually. The exergy destruction of the system is studied by considering real paths of the pressure and temperature data which are collected during the experiments of the ASHPWH under varying environmental conditions. In the following step, the evolution of the exergy destruction of the system is calculated by a code which is compiled on MATLAB along these temperature and pressure paths. The obtained results reveal the importance of the transient exergy analysis by providing detailed information about exergy destruction of the system such as where it drives up and reaches up to its max and where it drops down and evolves on a smooth path.
文摘This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP units by using the probe insertion method. There is a tendency to decrease energy efficiency compared to a high loading factor. GHP operation was almost all part load operation. This on-site evaluation indicates a clear difference between conventional and improved GHP.
文摘The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.
基金supported by the New&Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government Ministry of Trade,Industry&Energy(Grant No.20143030111000)
文摘Most commercial and industrial facilities require very low temperatures for refrigeration and high temperatures for space heating and hot water purposes. Single stage heat pumps have not been able to meet these temperature demands and have been characterized by low capacities and coefficient of performance(COP). Cascade heat pump has been developed to overcome the weaknesses of single stage heat pumps. This study reviews recent works done by researchers on cascade heat pumps for refrigeration, heating and hot water generation. Selection of suitable refrigerants to meet the pressure and temperature demands of each stage of the cascade heat pump has been discussed. Optimization of design parameters such as intermediate temperature(low stage condensing and high stage evaporating temperatures), and temperature difference in the cascade heat exchanger for optimum performance of the cascade heat pump has been reviewed. It was found that optimising each design parameter of the cascade heat pump is necessary for maximum system performance and this may improve the exergetic efficiency, especially of cascade refrigeration systems, by about 30.88%. Cascade heat pumps have wider range of application especially for artificial snow production, in the supermarkets,for natural gas liquefaction, in drying clothes and food and as heat recovery system. The performance of cascade heat pumps can be improved by 19% when coupled with other renewable energy sources for various real time applications. Also, there is the need for much research on refrigerant charge amount of cascade heat pumps, refrigerant-refrigerant heat exchangers to be used as cascade heat exchanger, cascade heat pumps for simultaneous cooling, heating and hot water generation and on the use of variable speed compressors and their control strategies in matching system capacity especially at part load conditions.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA10A510)
文摘This study presents the performance of a new single-stage scroll compressor used for the heat pump drying of thermally sensitive materials over a wide temperature range. The performance of the new compressor was predicted by an ARI standard 540 map-based compressor model and verified by a semi-open drying heat pump system constructed for this purpose. A comparison of the experimental data with the predicted data proved that the new scroll compressor used in the drying heat pump works well, can supply a wide range of condensing temperatures (30--80℃) (without auxiliary heating), and has a minimum coeffi- cient of performance (COP) above 2.0, even in the worst condition.
文摘A simple model for the desorption and absorption process of the chemical heat pump is presented in this paper, It is based on the assumption of a definite reaction front. The results from m this model are compared with those obtained by finite difference method and it is observed that there is almost no difference between them.