选取适合于双探针型海底热流计数据解算的简化模型,是双探针型海底热流计结构优化的理论基础,对提高海底热流数据解算精度具有重要意义。本文基于脉冲式双探针海底工作的有限元数值模型,对双探针的脉冲加热时间、体生热率、热物性、长...选取适合于双探针型海底热流计数据解算的简化模型,是双探针型海底热流计结构优化的理论基础,对提高海底热流数据解算精度具有重要意义。本文基于脉冲式双探针海底工作的有限元数值模型,对双探针的脉冲加热时间、体生热率、热物性、长度及半径等因素在双探针脉冲法的3个线热源简化模型中所引起的模型误差作了详细的分析和讨论,并以模型误差最小为原则选取简化模型。结果表明:1)脉冲加热有限长线热源(PFLS:pulsed finite line source)模型是双探针脉冲法中较为实用的简化模型,它可消除加热时间和探针长度对介质热物性参数求解的影响;2)在PFLS模型下,探针热导率对待测介质热物性测量的影响可以忽略;而探针间距越大、半径越小及其体积比热容与待测介质越接近,则所求介质热物性的模型误差就越小;在保证温度传感器能有效记录到温度变化的前提下,探针脉冲功率的大小基本不影响介质热物性求解的模型误差。展开更多
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,...The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.展开更多
Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the s...Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively.展开更多
In order to minimize the hot-carrier effect(HCE)and maintain on-state performance in the high voltage N-type lateral double diffused MOS(N-LDMOS), an optimized device structure with step gate oxide is proposed. Co...In order to minimize the hot-carrier effect(HCE)and maintain on-state performance in the high voltage N-type lateral double diffused MOS(N-LDMOS), an optimized device structure with step gate oxide is proposed. Compared with the conventional configuration, the electric field under the gate along the Si-SiO2 interface in the presented N-LDMOS can be greatly reduced, which favors reducing the hot-carrier degradation. The step gate oxide can be achieved by double gate oxide growth, which is commonly used in some smart power ICs. The differences in hot-carrier degradations between the novel structure and the conventional structure are investigated and analyzed by 2D technology computer-aided design(TCAD)numerical simulations, and the optimal length of the thick gate oxide part in the novel N-LDMOS device can also be acquired on the basis of maintaining the characteristic parameters of the conventional device. Finally, the practical degradation measurements of some characteristic parameters can also be carried out. It is found that the hot-carrier degradation of the novel N-LDMOS device can be improved greatly.展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and stra...To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation o...A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation of the turbulent flow, combustion and heat transfer was carried out to investigate the temperature distribution in industrial furnace. Inhomogeneities of the flue-gas temperature distribution were observed in X, Y, and Z direction of the furnace from the simulated results. Along the height of the furnace, the average flue-gas temperature increased initially and decreased afterward, and reached its peak at the height of 5 m. The reactor tube skin temperature varied not only along the height of the furnace, but also around the circumference of the tube. The heat flux profiles from the furnace towards the reactor tubes followed the shape of the average flue-gas temperature profile. The heat flux of the inlet tubes was constantly higher than that of the outlet tubes at the same height in the furnace.展开更多
Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instabi...Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.展开更多
High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of ...High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lea, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lea and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that: (i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm^3 can be easily realized for as-mtSOFC with single- and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with/cac(2 mm, 40 mm) is determined for three representative (tin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.展开更多
Mode Water’, as a product of air-sea interaction, influences the thermal structure and circulation pattern in upper layer ocean and consequently affects the variations of climate. In this paper the recent research re...Mode Water’, as a product of air-sea interaction, influences the thermal structure and circulation pattern in upper layer ocean and consequently affects the variations of climate. In this paper the recent research results about the subtropi-cal Mode Water in the North Pacific are overiewed. A detailed description of the three kinds of Mode Water in the subtropical North Pacific and some comparisons of their similarities and differences are introduced. Some science problems that need further exploration have been raised.展开更多
To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s...To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276.展开更多
For calculating the thermal storage time for an annular tube with phase change material (PCM), a novel method is proposed. The method is suitable for either low-temperature PCM or high-temperature PCM whose initial ...For calculating the thermal storage time for an annular tube with phase change material (PCM), a novel method is proposed. The method is suitable for either low-temperature PCM or high-temperature PCM whose initial temperature is near the melting point. The deviation fit is smaller than 8% when the time is below 2x104 s. Comparison between the predictions and the reported experimental data of thermal storage time at same conditions is investigated and good agreements have been got. Based on this method, the performance of the thermal storage unit and the role of natural convection are also investigated. Results show a linear relation between the maximum amount of stored heat and thermal storage time, and their ratio increases with the height of the thermal storage unit. As the thickness of the cavity increases, natural convection plays an increasingly important role in promoting the melting behavior of paraffin. When the thickness of the cavity is small, natural convection restrains the melting behavior of paraffin.展开更多
A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in th...A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.展开更多
文摘选取适合于双探针型海底热流计数据解算的简化模型,是双探针型海底热流计结构优化的理论基础,对提高海底热流数据解算精度具有重要意义。本文基于脉冲式双探针海底工作的有限元数值模型,对双探针的脉冲加热时间、体生热率、热物性、长度及半径等因素在双探针脉冲法的3个线热源简化模型中所引起的模型误差作了详细的分析和讨论,并以模型误差最小为原则选取简化模型。结果表明:1)脉冲加热有限长线热源(PFLS:pulsed finite line source)模型是双探针脉冲法中较为实用的简化模型,它可消除加热时间和探针长度对介质热物性参数求解的影响;2)在PFLS模型下,探针热导率对待测介质热物性测量的影响可以忽略;而探针间距越大、半径越小及其体积比热容与待测介质越接近,则所求介质热物性的模型误差就越小;在保证温度传感器能有效记录到温度变化的前提下,探针脉冲功率的大小基本不影响介质热物性求解的模型误差。
基金Project(NB-2020-JG-07)supported by the Research and Engineering Application of Key Technologies for New Building Industrialization Project of China Northwest Architectural Design and Research Institute Co.,Ltd.Project(2023-CXTD-29)supported by the Key Scientific and Technological Innovation Team of Shaanxi Province,ChinaProject supported by the K.C.Wong Education Foundation。
文摘The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.
基金Project(51005150)supported by the National Natural Science Foundation of ChinaProject(2011CB012903)supported by the National Basic Research Program of China
文摘Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively.
基金The Natural Science Foundation of Jiangsu Province(No.BK2008287)the Preresearch Project of the National Natural Science Foundation of Southeast University(No.XJ2008312)
文摘In order to minimize the hot-carrier effect(HCE)and maintain on-state performance in the high voltage N-type lateral double diffused MOS(N-LDMOS), an optimized device structure with step gate oxide is proposed. Compared with the conventional configuration, the electric field under the gate along the Si-SiO2 interface in the presented N-LDMOS can be greatly reduced, which favors reducing the hot-carrier degradation. The step gate oxide can be achieved by double gate oxide growth, which is commonly used in some smart power ICs. The differences in hot-carrier degradations between the novel structure and the conventional structure are investigated and analyzed by 2D technology computer-aided design(TCAD)numerical simulations, and the optimal length of the thick gate oxide part in the novel N-LDMOS device can also be acquired on the basis of maintaining the characteristic parameters of the conventional device. Finally, the practical degradation measurements of some characteristic parameters can also be carried out. It is found that the hot-carrier degradation of the novel N-LDMOS device can be improved greatly.
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
基金Project(51304171)supported by the National Natural Science Foundation of ChinaProject(E2013203248)supported by Natural Science Foundation of Hebei Province of ChinaProject(NECSR-201209)supported by Open Foundation of the National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,China
文摘To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
文摘A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation of the turbulent flow, combustion and heat transfer was carried out to investigate the temperature distribution in industrial furnace. Inhomogeneities of the flue-gas temperature distribution were observed in X, Y, and Z direction of the furnace from the simulated results. Along the height of the furnace, the average flue-gas temperature increased initially and decreased afterward, and reached its peak at the height of 5 m. The reactor tube skin temperature varied not only along the height of the furnace, but also around the circumference of the tube. The heat flux profiles from the furnace towards the reactor tubes followed the shape of the average flue-gas temperature profile. The heat flux of the inlet tubes was constantly higher than that of the outlet tubes at the same height in the furnace.
文摘Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.
基金This work was supported by the National Natural Science Foundation of China (No.11374272 and No.11574284) and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lea, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lea and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that: (i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm^3 can be easily realized for as-mtSOFC with single- and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with/cac(2 mm, 40 mm) is determined for three representative (tin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.
基金supported by the NSFC(No.49976004 and 40028605)National Key Program for Developing Basic Science(No.G1999043807).
文摘Mode Water’, as a product of air-sea interaction, influences the thermal structure and circulation pattern in upper layer ocean and consequently affects the variations of climate. In this paper the recent research results about the subtropi-cal Mode Water in the North Pacific are overiewed. A detailed description of the three kinds of Mode Water in the subtropical North Pacific and some comparisons of their similarities and differences are introduced. Some science problems that need further exploration have been raised.
基金Project(ZZYJKT2018-06)supported by the State Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2019zzts525)supported by the Fundamental Research Funds for the Central Universities of Central South University of China。
文摘To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276.
基金Projects(51666006,51406071,51174105,51366005)supported by the National Natural Science Foundation of ChinaProject(2014CB460605)supported by the National Basic Research Program of China
文摘For calculating the thermal storage time for an annular tube with phase change material (PCM), a novel method is proposed. The method is suitable for either low-temperature PCM or high-temperature PCM whose initial temperature is near the melting point. The deviation fit is smaller than 8% when the time is below 2x104 s. Comparison between the predictions and the reported experimental data of thermal storage time at same conditions is investigated and good agreements have been got. Based on this method, the performance of the thermal storage unit and the role of natural convection are also investigated. Results show a linear relation between the maximum amount of stored heat and thermal storage time, and their ratio increases with the height of the thermal storage unit. As the thickness of the cavity increases, natural convection plays an increasingly important role in promoting the melting behavior of paraffin. When the thickness of the cavity is small, natural convection restrains the melting behavior of paraffin.
基金funded by Jinguan Copper of Tongling Non-ferrous Metals Group Co., Ltd.
文摘A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.