Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the...Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.展开更多
Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent...Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.展开更多
Experimental study of natural convection heat transfer across air layers bounded by a lower hot rectangular and a square corrugated plates to an upper cold flat plate has been carried out. The surroundings of this spa...Experimental study of natural convection heat transfer across air layers bounded by a lower hot rectangular and a square corrugated plates to an upper cold flat plate has been carried out. The surroundings of this space are adiabatic. The effect of the angle of inclination, the aspect ratio, the temperature potential and the Rayleigh number on average heat transfer coefficients are investigated within a range of 0°≤75°,, 2.33≤A≤6.33, 10°≤T ≤35°, and 3.29xl04≤RaL≤ 2.29x106. The developed correlation predicts well the experimental data within an error of ±15%.展开更多
Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensienal discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of th...Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensienal discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Prt in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance ko and its destruction rate εθ The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.展开更多
基金Supported by the National Natural Science Foundation of China(51106140)the Natural Science Foundation of Zhejiang Province(Z1110695)
文摘Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.
文摘Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.
文摘Experimental study of natural convection heat transfer across air layers bounded by a lower hot rectangular and a square corrugated plates to an upper cold flat plate has been carried out. The surroundings of this space are adiabatic. The effect of the angle of inclination, the aspect ratio, the temperature potential and the Rayleigh number on average heat transfer coefficients are investigated within a range of 0°≤75°,, 2.33≤A≤6.33, 10°≤T ≤35°, and 3.29xl04≤RaL≤ 2.29x106. The developed correlation predicts well the experimental data within an error of ±15%.
文摘Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensienal discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Prt in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance ko and its destruction rate εθ The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.