The physics of low Reynolds number plumes is well understood, which allows a number of testable predictions to be made about mantle plumes. They are predicted to originate from the core-mantle boundary and consist of ...The physics of low Reynolds number plumes is well understood, which allows a number of testable predictions to be made about mantle plumes. They are predicted to originate from the core-mantle boundary and consist of a large head followed by a narrower tail. Millions of cubic kilometers of magma can be produced from a plume head. Rifting over a previously-emplaced plume head should produce a narrow zone of thickened oceanic crust along the rift margin. Initial eruption from a plume head should be preceded by -1,000 m of domal uplift. Picrites are expected to dominate the first eruptive products of a new plume and should be concentrated near the centre of the volcanic province. All of these predictions are confirmed by observations, and so provide strong support for the validity of the mantle plume hypothesis.展开更多
AERMOD is an advanced plume model that incorporates updated treatments of the boundary layer theory, understanding of turbulence and dispersion, and includes handling of terrain interactions as well as the PRIME downw...AERMOD is an advanced plume model that incorporates updated treatments of the boundary layer theory, understanding of turbulence and dispersion, and includes handling of terrain interactions as well as the PRIME downwash algorithm. It was reported that the US EPA approved AERMOD for short-range dispersion modeling. It was the high time that AERMOD would replace ISC3. ISC3 is a traditional Gaussian plume model regarded as the regulatory model of US EPA with the capacity of building downwash similar to that of AERMOD. In this paper, the authors describe the advantages of AERMOD over the regulatory model of ISC3 by comparing their predicted ground level concentrations (GLC) along downwind distance to the Alaska tracer field data. The field experiment features buoyant release of effluent at elevated height over a flat terrain and local flows influenced by building downwash. Three measures to compare the observed and simulated concentration data, such as linear regression, quantile-quantile (QQ) and residual box are utilized. To sum up, AERMOD shows significantly better space-time correlation and probability distribution than the ISC3, which frequently overestimates the GLC for effluent released with significant plume rise under stable atmospheric conditions. The performance of AERMOD is greatly enhanced by introducing the state-of-the-art knowledge of boundary layer meteorology as well as the turbulence parameterization method. In particular, AERMOD takes into account the meander effect on coherent plume in stable condition with current state-of-the-art Planetary Boundary Layer (PBL) parameterizations, while ISC3 is not capable of producing such important effect. Generally speaking, 1.17 is the overall predicted-to-observed ratio for short-term averages using AERMOD. 1.94 is the overall predicted-to-observed ratio for short-term averages using ISC3.展开更多
The Huangtuliang gold deposit is characterized by its wide and large ore belt,stable extension and closely spaced orebodies.Unfortunately,no orebody was found by deep drilling.As a result,ore prospecting in this regio...The Huangtuliang gold deposit is characterized by its wide and large ore belt,stable extension and closely spaced orebodies.Unfortunately,no orebody was found by deep drilling.As a result,ore prospecting in this region was once put into dilemma.Detailed analysis of ore-forming and ore-controlling structures in the mining district by the authors has revealed that the ore-forming and ore-controlling structure in this mining district is a steeply dipping(85°-110°/∠70°-85° N-NNE),spade-shaped ductile shear zone,and the ore-controlling structures are a series of nearly erected second-ordered faults which are developed in the upper part of the ductile shear zone,intersecting with the ductile shear zone.Deep cutting of the ductile shear zone made it possible the ascending of ore fluids from the mantle plume at depth and these ore fluids would migrate upwards along the ductile shear zone under certain temperature and pressure conditions.Along their ascending path,the ore fluids would extract ore-forming elements from the country rocks and the extracted ore-forming elements would be deposited as ores in the hanging-wall second-ordered faults.The reason why no orebody was found in early prospecting at depth is that northward-dipping drilling in the southern part of the shear zone extended so deeply as to be beneath the shear zone.Only shallow-level orebodies could be found by southward-dipping drilling practice in the northern part of the shear zone.The location where deep-seated orebodies occurred shifted northwards and the orebodies occurred at greater depth.Therefore,it is natural that no orebody could be found when drill core passed through the shear zone.After the ore-forming and ore-controlling structures were well understood,the focus of ore prospecting was placed on the deep-level,northward-penetrating veins.In this way a number of new blind orebodies of great thickness have been found.On the basis of research development in the mining district,a prospecting plan has been made for ore prospecting in the periphery of eastern mining district.Prospecting practice has shown that there occur generally continuous engineering orebodies at large intervals.So,the Huangtuliang gold deposit has turned at one stroke from a medium sized to a large-sized,even a super-large gold deposit between prospecting lines 30-98.展开更多
This work deals with the characteristics of mantle branch structure in western Shandong Province, China, with respect to the distribution characteristics and ages of the regional strata, the development of ring-like a...This work deals with the characteristics of mantle branch structure in western Shandong Province, China, with respect to the distribution characteristics and ages of the regional strata, the development of ring-like and radial faults, the development of gently inclined detachment-slip structures in the axial part, mantle-source magmatic activities, regional petrology, petrochemistry and isotope geology. The study indicated that the N-W sharply plunged ductile shear zone in the region of western Shandong cuts through the mantle rocks detached from the deep-seated North China mantle sub-plume, hence leading to unloading in response to depressurization and thereafter the formation of anatexis magma. The intense and complete magmatic evolution series not only manifests a variation trend of alkalinity of magma from high to low and its intrusive depth from deep to shallow, but also reflects that the wall-rock alteration shows a general evolution trend from strong to weak. The evolution of mantle structure played an important role in controlling endo-mineralogenesis, accompanied with the rise of the country rocks. As a result, typical mantle branch structures were formed as observed in western Shandong. At the top of the mantle branch structure was developed an obvious detachment-tilt fault block, and some endogenic ores, at the same time, were uplifted onto the shallow levels.展开更多
Studies on geotectonic evolution, regionally geological characteristics and ore-forming and ore-controlling structures have shown that since the Mesozoic the Da Hinggan Ling region has entered the typical intercontine...Studies on geotectonic evolution, regionally geological characteristics and ore-forming and ore-controlling structures have shown that since the Mesozoic the Da Hinggan Ling region has entered the typical intercontinental orogenic stage, which appears to be closely related to mantle plume activities. Da Hinggan Ling is a typical mantle branch structure and possesses obvious magmatic-metamorphic complexes in the core, detachment slip beds in the periphery and overlapped fault depression basins. Moreover, all these are the principal factors leading to ore formation and ore controlling in the region. This paper also further explores the mechanism of mineralization in the middle-southern segment of Da Hinggan Ling, summaries the rules of mineralization, puts forward the models of mineralization and points out the ore-search orientations in the future time.展开更多
The heat transfer features around the elliptic cylinder of axis ratio 4∶1 in crossflow were investigated experimentally within a wide range of Reynolds number. By means of heat-mass transfer analogy and the naphthale...The heat transfer features around the elliptic cylinder of axis ratio 4∶1 in crossflow were investigated experimentally within a wide range of Reynolds number. By means of heat-mass transfer analogy and the naphthalene sublimation technique, the local heat transfer distribution and the mean heat transfer coefficient are clarified. The result shows that the mean heat transfer coefficient is higher than that of a circular cylinder in most Reynolds number range regarded, and this superiority turns to be more significant with the increase of flow speed. Moreover, the effect of axis ratio on mean heat transfer coefficient was investigated tentatively. The oil-lampblack technique was employed to enable visualization of the flow pattern around the cylinder and on the cylinder wall.展开更多
In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffr...In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.展开更多
The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kep...The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kept at a constant temperature while the inner cylinder is heated with constant heat flux. The governing equations are normalized and solved using the vorticity-stream function and the BFC (body fitted coordinates) methods. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. A computer program (Fortran 90) was built to calculate Nusselt number (Nu) and friction factorffor unsteady state condition for fluid Prandtl number fixed at (Pr = 0.7) (for air as working fluid) with radius ratio (/~ = 2.6), Rayleigh number (0 〈 Ra 〈 103), Reynolds number (50 〈 Re 〈 2,000), conduction-radiation parameter (0 〈 N 〈 10), optical thickness (0 〈 l" 〈 10) and different annulus inclination with horizontal plane (0~ _〈 d 〈 90~) for concentric cylindrical annulus. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that as 3 increasefwill be decrease and also when Re increasefwill be decrease for any value of Ra causing increase in heat transfer. The maximum value off can be recognized at ~ = 90~ and the minimum value at 6 = 0~ for low Re. There is an optimum value of annulus inclination that gives maximum value of Nu, this maximum value appears at 90~ of annulus inclination comparison of the result with the previous work shows a good agreement.展开更多
A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady s...A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.展开更多
A numerical study of natural convection heat transfer in an inclined cylindrical annulus has been conducted. The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant tem...A numerical study of natural convection heat transfer in an inclined cylindrical annulus has been conducted. The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant temperature. The two end walls are assumed to be insulated. A numerical code has been developed to calculate the steady state three-dimensional natural convection in an inclined cylindrical annulus, and the research emphasis is placed on the influences of inclination angle or and modified Rayleigh number Ra on the natural convection heat transfer in the annulus. Computations were carried out in the ranges of 0°α 90*, 2.5×105 Ra* and Pr=0.7 with fixed aspect ratio of H=28.97 and radius ratio of K= 3.33. The numerical results are compared with the experimental correlations from the literature and the inclination angle effect on heat transfer is found to be insignificant. Detailed results of heat transfer rate, temperature, and velocity fields are presented for the case of or α=45° and discussion is also made concerning the comparison between the numerical and experimental results for the specific case of α=90°.展开更多
The flow and heat transfer characteristics, including transition critical Reynolds number from two-dimensional to three-dimensional, the influence of slit-cylinder geometric parameter on Strouhal number, Nusselt numbe...The flow and heat transfer characteristics, including transition critical Reynolds number from two-dimensional to three-dimensional, the influence of slit-cylinder geometric parameter on Strouhal number, Nusselt number and forces acting on the slit-cylinder are numerically investigated. It's found that transition critical Reynolds number from two-dimensional(flow wake deforms in two directions) to three-dimensional(flow wake deforms in three directions) increases with the augment of the slit width ratio in the range of present considered Reynolds number. The present results indicate that the three-dimensional vortex structures resulting from the deformation of the vortex shedding have significant effects on flow and heat transfer features such as Strouhal number, Nusselt number and forces acting on the cylinders with different ratios of slit width. It's observed that the drag and lift coefficients reduce as the increase of slit width ratio, and vortex shedding is effectively suppressed by the slits.Moreover, the comprehensive heat transfer performance of the cylinder with the slits is significantly improved with the increase of the slit width ratio.展开更多
Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral tr...Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 μm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.展开更多
Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental dat...Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental data.Flow structures are described and impingement heat transfer characteristics are discussed.The effects of Re,H/B and D/B on single-slot jets impingement heat transfer are analyzed and heat transfer characteristics of multiple-slot jets are investigated.The results show that:Gas flows along the convex surface and boundary layer separation occurs in both single and multiple-slot jets impingement.A maximum stagnation Nu appears at H/B=8 and the local Nu decreases with increasing H/B in the region far away from the stagnation.The Nu in the stagnation region decreases with increasing D/B but the Nu is nearly the same in the region far away from the stagnation.Pressure gradient is an important factor on heat transfer enhancement.Correlations of the Num for single-slot,double-slot and quadric-slot jets impinging on a convex surface are obtained.It indicates the effects of Re and D/B on Num could become more important in less slot jets impingement.展开更多
The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied b...The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation.It is observed that the tonal noise generated from the finned tube at two pitch spaces.The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27.The tone level increases and the frequency decreases with the pitch shorter.The separation flow from the cylinder generates the span-wise vortices,Karman vortices,and the separation flow from the fin generates the stream-wise vortices.When the fin pitch ratio is small,the stream-wise vortices line up to span-wise and become weak rapidly.Only the Karman vortices are remained and integrate in span.So the Karman vortex became large.This causes the low frequency and the large aeolian tone.展开更多
文摘The physics of low Reynolds number plumes is well understood, which allows a number of testable predictions to be made about mantle plumes. They are predicted to originate from the core-mantle boundary and consist of a large head followed by a narrower tail. Millions of cubic kilometers of magma can be produced from a plume head. Rifting over a previously-emplaced plume head should produce a narrow zone of thickened oceanic crust along the rift margin. Initial eruption from a plume head should be preceded by -1,000 m of domal uplift. Picrites are expected to dominate the first eruptive products of a new plume and should be concentrated near the centre of the volcanic province. All of these predictions are confirmed by observations, and so provide strong support for the validity of the mantle plume hypothesis.
文摘AERMOD is an advanced plume model that incorporates updated treatments of the boundary layer theory, understanding of turbulence and dispersion, and includes handling of terrain interactions as well as the PRIME downwash algorithm. It was reported that the US EPA approved AERMOD for short-range dispersion modeling. It was the high time that AERMOD would replace ISC3. ISC3 is a traditional Gaussian plume model regarded as the regulatory model of US EPA with the capacity of building downwash similar to that of AERMOD. In this paper, the authors describe the advantages of AERMOD over the regulatory model of ISC3 by comparing their predicted ground level concentrations (GLC) along downwind distance to the Alaska tracer field data. The field experiment features buoyant release of effluent at elevated height over a flat terrain and local flows influenced by building downwash. Three measures to compare the observed and simulated concentration data, such as linear regression, quantile-quantile (QQ) and residual box are utilized. To sum up, AERMOD shows significantly better space-time correlation and probability distribution than the ISC3, which frequently overestimates the GLC for effluent released with significant plume rise under stable atmospheric conditions. The performance of AERMOD is greatly enhanced by introducing the state-of-the-art knowledge of boundary layer meteorology as well as the turbulence parameterization method. In particular, AERMOD takes into account the meander effect on coherent plume in stable condition with current state-of-the-art Planetary Boundary Layer (PBL) parameterizations, while ISC3 is not capable of producing such important effect. Generally speaking, 1.17 is the overall predicted-to-observed ratio for short-term averages using AERMOD. 1.94 is the overall predicted-to-observed ratio for short-term averages using ISC3.
基金supported jointly by the Natural Science Foundation of Hebei Province(Grant No.D2007000751)the exploration projects of Hebei Province Resources Department(2006122,the Large-scale Geological Survey in China)(No.121201631106).
文摘The Huangtuliang gold deposit is characterized by its wide and large ore belt,stable extension and closely spaced orebodies.Unfortunately,no orebody was found by deep drilling.As a result,ore prospecting in this region was once put into dilemma.Detailed analysis of ore-forming and ore-controlling structures in the mining district by the authors has revealed that the ore-forming and ore-controlling structure in this mining district is a steeply dipping(85°-110°/∠70°-85° N-NNE),spade-shaped ductile shear zone,and the ore-controlling structures are a series of nearly erected second-ordered faults which are developed in the upper part of the ductile shear zone,intersecting with the ductile shear zone.Deep cutting of the ductile shear zone made it possible the ascending of ore fluids from the mantle plume at depth and these ore fluids would migrate upwards along the ductile shear zone under certain temperature and pressure conditions.Along their ascending path,the ore fluids would extract ore-forming elements from the country rocks and the extracted ore-forming elements would be deposited as ores in the hanging-wall second-ordered faults.The reason why no orebody was found in early prospecting at depth is that northward-dipping drilling in the southern part of the shear zone extended so deeply as to be beneath the shear zone.Only shallow-level orebodies could be found by southward-dipping drilling practice in the northern part of the shear zone.The location where deep-seated orebodies occurred shifted northwards and the orebodies occurred at greater depth.Therefore,it is natural that no orebody could be found when drill core passed through the shear zone.After the ore-forming and ore-controlling structures were well understood,the focus of ore prospecting was placed on the deep-level,northward-penetrating veins.In this way a number of new blind orebodies of great thickness have been found.On the basis of research development in the mining district,a prospecting plan has been made for ore prospecting in the periphery of eastern mining district.Prospecting practice has shown that there occur generally continuous engineering orebodies at large intervals.So,the Huangtuliang gold deposit has turned at one stroke from a medium sized to a large-sized,even a super-large gold deposit between prospecting lines 30-98.
基金This research project was financially supported jointly by the NationaNatural Science Foundation of China (Grant No. 40272088), theLarge-scale Geological Survey in China (No. 2000110100038) and theCentral Mining Funds (2003-20).
文摘This work deals with the characteristics of mantle branch structure in western Shandong Province, China, with respect to the distribution characteristics and ages of the regional strata, the development of ring-like and radial faults, the development of gently inclined detachment-slip structures in the axial part, mantle-source magmatic activities, regional petrology, petrochemistry and isotope geology. The study indicated that the N-W sharply plunged ductile shear zone in the region of western Shandong cuts through the mantle rocks detached from the deep-seated North China mantle sub-plume, hence leading to unloading in response to depressurization and thereafter the formation of anatexis magma. The intense and complete magmatic evolution series not only manifests a variation trend of alkalinity of magma from high to low and its intrusive depth from deep to shallow, but also reflects that the wall-rock alteration shows a general evolution trend from strong to weak. The evolution of mantle structure played an important role in controlling endo-mineralogenesis, accompanied with the rise of the country rocks. As a result, typical mantle branch structures were formed as observed in western Shandong. At the top of the mantle branch structure was developed an obvious detachment-tilt fault block, and some endogenic ores, at the same time, were uplifted onto the shallow levels.
文摘Studies on geotectonic evolution, regionally geological characteristics and ore-forming and ore-controlling structures have shown that since the Mesozoic the Da Hinggan Ling region has entered the typical intercontinental orogenic stage, which appears to be closely related to mantle plume activities. Da Hinggan Ling is a typical mantle branch structure and possesses obvious magmatic-metamorphic complexes in the core, detachment slip beds in the periphery and overlapped fault depression basins. Moreover, all these are the principal factors leading to ore formation and ore controlling in the region. This paper also further explores the mechanism of mineralization in the middle-southern segment of Da Hinggan Ling, summaries the rules of mineralization, puts forward the models of mineralization and points out the ore-search orientations in the future time.
文摘The heat transfer features around the elliptic cylinder of axis ratio 4∶1 in crossflow were investigated experimentally within a wide range of Reynolds number. By means of heat-mass transfer analogy and the naphthalene sublimation technique, the local heat transfer distribution and the mean heat transfer coefficient are clarified. The result shows that the mean heat transfer coefficient is higher than that of a circular cylinder in most Reynolds number range regarded, and this superiority turns to be more significant with the increase of flow speed. Moreover, the effect of axis ratio on mean heat transfer coefficient was investigated tentatively. The oil-lampblack technique was employed to enable visualization of the flow pattern around the cylinder and on the cylinder wall.
文摘In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.
文摘The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kept at a constant temperature while the inner cylinder is heated with constant heat flux. The governing equations are normalized and solved using the vorticity-stream function and the BFC (body fitted coordinates) methods. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. A computer program (Fortran 90) was built to calculate Nusselt number (Nu) and friction factorffor unsteady state condition for fluid Prandtl number fixed at (Pr = 0.7) (for air as working fluid) with radius ratio (/~ = 2.6), Rayleigh number (0 〈 Ra 〈 103), Reynolds number (50 〈 Re 〈 2,000), conduction-radiation parameter (0 〈 N 〈 10), optical thickness (0 〈 l" 〈 10) and different annulus inclination with horizontal plane (0~ _〈 d 〈 90~) for concentric cylindrical annulus. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that as 3 increasefwill be decrease and also when Re increasefwill be decrease for any value of Ra causing increase in heat transfer. The maximum value off can be recognized at ~ = 90~ and the minimum value at 6 = 0~ for low Re. There is an optimum value of annulus inclination that gives maximum value of Nu, this maximum value appears at 90~ of annulus inclination comparison of the result with the previous work shows a good agreement.
文摘A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.
文摘A numerical study of natural convection heat transfer in an inclined cylindrical annulus has been conducted. The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant temperature. The two end walls are assumed to be insulated. A numerical code has been developed to calculate the steady state three-dimensional natural convection in an inclined cylindrical annulus, and the research emphasis is placed on the influences of inclination angle or and modified Rayleigh number Ra on the natural convection heat transfer in the annulus. Computations were carried out in the ranges of 0°α 90*, 2.5×105 Ra* and Pr=0.7 with fixed aspect ratio of H=28.97 and radius ratio of K= 3.33. The numerical results are compared with the experimental correlations from the literature and the inclination angle effect on heat transfer is found to be insignificant. Detailed results of heat transfer rate, temperature, and velocity fields are presented for the case of or α=45° and discussion is also made concerning the comparison between the numerical and experimental results for the specific case of α=90°.
文摘The flow and heat transfer characteristics, including transition critical Reynolds number from two-dimensional to three-dimensional, the influence of slit-cylinder geometric parameter on Strouhal number, Nusselt number and forces acting on the slit-cylinder are numerically investigated. It's found that transition critical Reynolds number from two-dimensional(flow wake deforms in two directions) to three-dimensional(flow wake deforms in three directions) increases with the augment of the slit width ratio in the range of present considered Reynolds number. The present results indicate that the three-dimensional vortex structures resulting from the deformation of the vortex shedding have significant effects on flow and heat transfer features such as Strouhal number, Nusselt number and forces acting on the cylinders with different ratios of slit width. It's observed that the drag and lift coefficients reduce as the increase of slit width ratio, and vortex shedding is effectively suppressed by the slits.Moreover, the comprehensive heat transfer performance of the cylinder with the slits is significantly improved with the increase of the slit width ratio.
文摘Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 μm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.
文摘Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental data.Flow structures are described and impingement heat transfer characteristics are discussed.The effects of Re,H/B and D/B on single-slot jets impingement heat transfer are analyzed and heat transfer characteristics of multiple-slot jets are investigated.The results show that:Gas flows along the convex surface and boundary layer separation occurs in both single and multiple-slot jets impingement.A maximum stagnation Nu appears at H/B=8 and the local Nu decreases with increasing H/B in the region far away from the stagnation.The Nu in the stagnation region decreases with increasing D/B but the Nu is nearly the same in the region far away from the stagnation.Pressure gradient is an important factor on heat transfer enhancement.Correlations of the Num for single-slot,double-slot and quadric-slot jets impinging on a convex surface are obtained.It indicates the effects of Re and D/B on Num could become more important in less slot jets impingement.
文摘The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation.It is observed that the tonal noise generated from the finned tube at two pitch spaces.The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27.The tone level increases and the frequency decreases with the pitch shorter.The separation flow from the cylinder generates the span-wise vortices,Karman vortices,and the separation flow from the fin generates the stream-wise vortices.When the fin pitch ratio is small,the stream-wise vortices line up to span-wise and become weak rapidly.Only the Karman vortices are remained and integrate in span.So the Karman vortex became large.This causes the low frequency and the large aeolian tone.