This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal d...This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal diffusivity and the characteristics of the flow and heat transfer are analyzed. The results show that the distribution of the thermal boundary layer depends not only on the velocity ratio parameter of the plate, but also on the power law index and Prandtl number of fluids.展开更多
Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation...Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary.A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.展开更多
The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with ...The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By using the temperature transfer matrix, the outlet fluid temperatures could be easily calculated for a given air preheater and inlet fluid temperatures. The active length of condenser in a variable conductance heat pipe is determined according to the flat interface model. With the same initial conditions, the comparisons between variable conductance heat-pipe air preheater and regular heat pipe air preheater has been analyzed and tested in terms of heat pipe wall temperature, heat transfer surface area and outlet fluid temperatures. Based on the real industrial applications, it has been confirmed that the variable conductance heat pipe air preheater has excellent performance of anti-corrosion and anti-ash-deposition especially at the variable working condition and the sulfur coal (5%-6% mass fraction of sulfur) condition.展开更多
基金The work is supported by the National Natural Science Foundation of China (No. 50476083).
文摘This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal diffusivity and the characteristics of the flow and heat transfer are analyzed. The results show that the distribution of the thermal boundary layer depends not only on the velocity ratio parameter of the plate, but also on the power law index and Prandtl number of fluids.
文摘Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary.A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.
文摘The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By using the temperature transfer matrix, the outlet fluid temperatures could be easily calculated for a given air preheater and inlet fluid temperatures. The active length of condenser in a variable conductance heat pipe is determined according to the flat interface model. With the same initial conditions, the comparisons between variable conductance heat-pipe air preheater and regular heat pipe air preheater has been analyzed and tested in terms of heat pipe wall temperature, heat transfer surface area and outlet fluid temperatures. Based on the real industrial applications, it has been confirmed that the variable conductance heat pipe air preheater has excellent performance of anti-corrosion and anti-ash-deposition especially at the variable working condition and the sulfur coal (5%-6% mass fraction of sulfur) condition.