The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface f...The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.展开更多
Comparison of field results and digital simulation results of voltage-sourced converter-based FACTS controllers;COMPENSATION FOR LOAD AND SPEEDVARIATION OF SELF-EXCITED INDUCTION GENERATOR;Coupling experimental desi...Comparison of field results and digital simulation results of voltage-sourced converter-based FACTS controllers;COMPENSATION FOR LOAD AND SPEEDVARIATION OF SELF-EXCITED INDUCTION GENERATOR;Coupling experimental design-digital simulation of junctions for the development of complex tolerance chains;Critical heat flux of ice accretion along a fine wire immersed in cold air stream with water spray (digitalsimulation on effects of droplet diameter profile on criticalheat flux);Cushioning of pneumatic cylinders。展开更多
The distributions of strata rock temperature around a driving head with auxil- iary ventilation were analyzed theoretically based on a program which was developed by the authors to predict the thermal environmental co...The distributions of strata rock temperature around a driving head with auxil- iary ventilation were analyzed theoretically based on a program which was developed by the authors to predict the thermal environmental conditions in a development heading with forcing auxiliary ventilation. The influences of wetness of the airway surface were dis- cussed on the cooled zone of the strata rock and on the temperature distribution in the surrounding rock. It is shown that the advancing speed and driving time have little influ- ence on the temperature profile in front of the working face of a driving airway, and the rock temperature 1.5 m ahead of the working face can be taken as the virgin rock tem- perature.展开更多
This paper focuses on the impacts of convective momentum transport(CMT) on simulations of the tropical intraseasonal oscillation(TIO) in SAMIL. Two sets of experiments are performed, which give different reality of th...This paper focuses on the impacts of convective momentum transport(CMT) on simulations of the tropical intraseasonal oscillation(TIO) in SAMIL. Two sets of experiments are performed, which give different reality of the Madden-Julian Oscillation(MJO). The Tiedtke cumulus parameterization scheme is used for all experiments. It is found that simulations of the TIO can be influenced by CMT, and the impacts on the simulated TIO depend on the model capability in simulating the MJO. CMT tends to have large influences to the model that can simulate the eastward propagation of the MJO. CMT can further influence the long-term mean of zonal wind and its vertical shear. Zonal wind suffers from easterlies biases at low level and westerlies biases at upper level when CMT is introduced. Such easterlies biases at low level reduce the reality of the simulated tropical intraseasonal oscillation. When CMT is introduced in the model, MJO signals disappear but the model's mean state improves. Therefore, a more appropriate way is needed to introduce CMT to the model to balance the simulated mean state and TIO signals.展开更多
The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil...The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil body with leakage are discussed. Then temperature tracer model is established according to stable heat conduction theory. In such model, the concentrated seepage passage is simplified into a circular pipe as a boundary condition. The location, scope and flow-velocity of the concentrated leakage are estimated via ichnography of the lowest temperature based on temperature data from detecting wells by quantitative computation and qualitative analysis. In case study, the distribution characteristic of temperature (including temperature data of water in reservoir, drainage pipes and tail pond) can be interpreted by this model. A modified model is also set up, applied for detected data at different cross-sections of the leakage passage, in which the temperature data are rectified according to distances from data locations to calculating section. Finally, the model is solved by numerical iterative method, and the possible error of this theoretical model is discussed. The permeability coefficient in leakage area is identical with that of normal soil in magnitude after anti-seepage repairing accomplished, which indicates this model is effective.展开更多
Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding...Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding nanoparticles to the base fluid,are used to improve heat transfer in an annulus heated on both walls.To study porous media insert,porous ribs are used on the outer and inner walls independently.The results show that when porous ribs are placed on the outer wall,although the heat transfer enhances,the pressure drop increment is so considerable that performance number (the ratio of heat transfer enhancement pressure increment,PN) is less than unity for all porous rib heights and porous media permeabilities that are studied.On the other hand,the PN of cases where porous ribs were placed on the inner wall depends on the Darcy number (Da).For example,for ribs with Da=0.1 and Da=0.0001,the maximum performance number,PN=4,occurs at the porous ribs height to hydraulic diameter ratios H/Dh=1 and H/Dh=0.25.Under these conditions,heat transfer is enhanced by two orders of magnitude.It is found that adding 5% nanoparticles to the base fluid in the two aforementioned cases improves the Nusselt number and PN by 10%–40%.展开更多
The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is m...The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.展开更多
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.
文摘Comparison of field results and digital simulation results of voltage-sourced converter-based FACTS controllers;COMPENSATION FOR LOAD AND SPEEDVARIATION OF SELF-EXCITED INDUCTION GENERATOR;Coupling experimental design-digital simulation of junctions for the development of complex tolerance chains;Critical heat flux of ice accretion along a fine wire immersed in cold air stream with water spray (digitalsimulation on effects of droplet diameter profile on criticalheat flux);Cushioning of pneumatic cylinders。
基金Supported by Natural Science Foundation of Henan Province (0311051900)Supported by Fundamental Research Project of Education De-partment of Henan Province (2003440221)
文摘The distributions of strata rock temperature around a driving head with auxil- iary ventilation were analyzed theoretically based on a program which was developed by the authors to predict the thermal environmental conditions in a development heading with forcing auxiliary ventilation. The influences of wetness of the airway surface were dis- cussed on the cooled zone of the strata rock and on the temperature distribution in the surrounding rock. It is shown that the advancing speed and driving time have little influ- ence on the temperature profile in front of the working face of a driving airway, and the rock temperature 1.5 m ahead of the working face can be taken as the virgin rock tem- perature.
基金sponsored by the Joint Project of Natural Science Foundation of China and Yunnan Province (U0833602)
文摘This paper focuses on the impacts of convective momentum transport(CMT) on simulations of the tropical intraseasonal oscillation(TIO) in SAMIL. Two sets of experiments are performed, which give different reality of the Madden-Julian Oscillation(MJO). The Tiedtke cumulus parameterization scheme is used for all experiments. It is found that simulations of the TIO can be influenced by CMT, and the impacts on the simulated TIO depend on the model capability in simulating the MJO. CMT tends to have large influences to the model that can simulate the eastward propagation of the MJO. CMT can further influence the long-term mean of zonal wind and its vertical shear. Zonal wind suffers from easterlies biases at low level and westerlies biases at upper level when CMT is introduced. Such easterlies biases at low level reduce the reality of the simulated tropical intraseasonal oscillation. When CMT is introduced in the model, MJO signals disappear but the model's mean state improves. Therefore, a more appropriate way is needed to introduce CMT to the model to balance the simulated mean state and TIO signals.
基金Financial support from the National Nature Science Foundation of China(50179009)National Nature Science Foundation of China for important project(50139030)
文摘The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil body with leakage are discussed. Then temperature tracer model is established according to stable heat conduction theory. In such model, the concentrated seepage passage is simplified into a circular pipe as a boundary condition. The location, scope and flow-velocity of the concentrated leakage are estimated via ichnography of the lowest temperature based on temperature data from detecting wells by quantitative computation and qualitative analysis. In case study, the distribution characteristic of temperature (including temperature data of water in reservoir, drainage pipes and tail pond) can be interpreted by this model. A modified model is also set up, applied for detected data at different cross-sections of the leakage passage, in which the temperature data are rectified according to distances from data locations to calculating section. Finally, the model is solved by numerical iterative method, and the possible error of this theoretical model is discussed. The permeability coefficient in leakage area is identical with that of normal soil in magnitude after anti-seepage repairing accomplished, which indicates this model is effective.
文摘Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding nanoparticles to the base fluid,are used to improve heat transfer in an annulus heated on both walls.To study porous media insert,porous ribs are used on the outer and inner walls independently.The results show that when porous ribs are placed on the outer wall,although the heat transfer enhances,the pressure drop increment is so considerable that performance number (the ratio of heat transfer enhancement pressure increment,PN) is less than unity for all porous rib heights and porous media permeabilities that are studied.On the other hand,the PN of cases where porous ribs were placed on the inner wall depends on the Darcy number (Da).For example,for ribs with Da=0.1 and Da=0.0001,the maximum performance number,PN=4,occurs at the porous ribs height to hydraulic diameter ratios H/Dh=1 and H/Dh=0.25.Under these conditions,heat transfer is enhanced by two orders of magnitude.It is found that adding 5% nanoparticles to the base fluid in the two aforementioned cases improves the Nusselt number and PN by 10%–40%.
文摘The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.