Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding...Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding nanoparticles to the base fluid,are used to improve heat transfer in an annulus heated on both walls.To study porous media insert,porous ribs are used on the outer and inner walls independently.The results show that when porous ribs are placed on the outer wall,although the heat transfer enhances,the pressure drop increment is so considerable that performance number (the ratio of heat transfer enhancement pressure increment,PN) is less than unity for all porous rib heights and porous media permeabilities that are studied.On the other hand,the PN of cases where porous ribs were placed on the inner wall depends on the Darcy number (Da).For example,for ribs with Da=0.1 and Da=0.0001,the maximum performance number,PN=4,occurs at the porous ribs height to hydraulic diameter ratios H/Dh=1 and H/Dh=0.25.Under these conditions,heat transfer is enhanced by two orders of magnitude.It is found that adding 5% nanoparticles to the base fluid in the two aforementioned cases improves the Nusselt number and PN by 10%–40%.展开更多
The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil...The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil body with leakage are discussed. Then temperature tracer model is established according to stable heat conduction theory. In such model, the concentrated seepage passage is simplified into a circular pipe as a boundary condition. The location, scope and flow-velocity of the concentrated leakage are estimated via ichnography of the lowest temperature based on temperature data from detecting wells by quantitative computation and qualitative analysis. In case study, the distribution characteristic of temperature (including temperature data of water in reservoir, drainage pipes and tail pond) can be interpreted by this model. A modified model is also set up, applied for detected data at different cross-sections of the leakage passage, in which the temperature data are rectified according to distances from data locations to calculating section. Finally, the model is solved by numerical iterative method, and the possible error of this theoretical model is discussed. The permeability coefficient in leakage area is identical with that of normal soil in magnitude after anti-seepage repairing accomplished, which indicates this model is effective.展开更多
The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temper...The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.展开更多
A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model...A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.展开更多
Numerical calculations were conducted to simulate the flow and mass transfer in narrow membrane channels equipped with delta winglets, which are often used as longitudinal vortex generators to enhance heat transfer in...Numerical calculations were conducted to simulate the flow and mass transfer in narrow membrane channels equipped with delta winglets, which are often used as longitudinal vortex generators to enhance heat transfer in heat exchanger applications. The channel consists of an impermeable solid wall and a membrane. The delta winglets are attached to the solid wall surface to enhance the mass transfer near the membrane surface and suppress the concentration polarization. The winglet performance was evaluated in terms of concentration polarization factor versus consumed pumping power. Calculations were implemented for NaCl solution flow in a membrane channel having a height of 2.0 mm for Reynolds numbers ranging from 400 to 1000. The delta wing- lets were optimized under equal pumping power condition, and the results of optimization suggest winglet height of 5/6 of the channel height, aspect ratio of 2.0, attack angle of 30% and a winglet interval equal to the channel height The optimal delta winglets were compared with the optimal rectangular winglets we found previously, and it is shown that the rectangular winglets yield a somewhat better performance than the delta winglets. @ 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.展开更多
This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the li...This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.展开更多
The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow ann...The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.展开更多
The present study numerically investigates the characteristics of three-dimensional turbulent flow and heat transfer in the channel with one corrugated wall heated with constant temperature by means of large eddy simu...The present study numerically investigates the characteristics of three-dimensional turbulent flow and heat transfer in the channel with one corrugated wall heated with constant temperature by means of large eddy simulation.The corrugated wall is sinusoidal in the streamwise and spanwise directions.The Reynolds number in terms of bulk velocity and channel half-height is fixed at 2800 and the wave amplitude to wavelength ratio is varied in the rangeα/λ=0.01,0.02,0.04 in the streamwise direction andα/λ=0.01,0.02,0.04 in the spanwise direction.The results show that flow separation bubbles appear and near-wall streamwise vortices are generated with larger population in the upslope region of the bottom wall as wave amplitude increases.Compared with flat wall,the corrugated geometry increases the pressure coefficient and decreases the friction coefficient on the corrugated wall,and consequently increases the total drag coefficient owing to the increase of pressure coefficient,as expected,the heat transfer is higher.The waves in the spanwise direction converge the vortices into the trough along the streamwise direction and push them away from the bottom wall.Finally,thermal performance factor is defined and the effects of wave amplitude on the thermal performance are scrutinized.展开更多
This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The in...This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations foi: the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a comer fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.展开更多
Heat and mass transfer between porous media and fluid is a complex coupling process, which is widely used in various fields of engineering applications, especially for natural and artificial fractures in oil and gas e...Heat and mass transfer between porous media and fluid is a complex coupling process, which is widely used in various fields of engineering applications, especially for natural and artificial fractures in oil and gas extraction. In this study, a new method is proposed to deal with the flow and heat transfer problem of steady flow in a fracture. The fluid flow in a fracture was described using the same method as Mohais, who considered a fracture as a channel with porous wall, and the perturbation method was used to solve the mathematical model. Unlike previous studies, the shear jump boundary condition proposed by Ochoa-Tapia and Whitaker was used at the interface between the fluid and porous media. The main methods were perturbation analysis and the application of shear jump boundary conditions. The influence of permeability, channel width, shear jump degree and effective dynamic viscosity on the flow and heat transfer in the channel was studied by analysing the analytical solution. The distribution of axial velocity in the channel with the change of the typical parameters and the sensitivity of the heat transfer was obtained.展开更多
The present study reports an experimental evaluation of heat transfer characteristic of R134a flow boiling in mi- cro-channel heat sink. The heat sink is composed of 30 parallel rectangular micro-channels with cross-s...The present study reports an experimental evaluation of heat transfer characteristic of R134a flow boiling in mi- cro-channel heat sink. The heat sink is composed of 30 parallel rectangular micro-channels with cross-sectional dimensions of 500μm width and depth, as well as total length 30ram. Experiments were conducted with heat flux up to 80.212 W/cm2, mass velocity ranging from 373.33 to 1244.44 kg/m2s, vapor quality ranging from 0.06 to 0.9. The wall temperature of heat sink heated could be controlled at around 50℃. Heat transfer coefficient could be up to 180 kW/mZK. Two dominating flow patterns were observed by analyzing boiling curves. The heat trans- fer characteristics of nucleate boiling and convective boiling were presented in the study. Revised correlations of R134a flow boiling in micro-channel heat sink were carded out with the consideration of nucleate boiling and convective boiling mechanisms.展开更多
This paper presents effects of heating directions on heat transfer performance of R134 a flow boiling in micro-channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 5...This paper presents effects of heating directions on heat transfer performance of R134 a flow boiling in micro-channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500mm width 500mm depth and 30 mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm^2 and 373.3 to 1244.4 kg/m^2 s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 k W/m^2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.展开更多
In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and therma...In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.展开更多
This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite wall...This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.展开更多
文摘Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding nanoparticles to the base fluid,are used to improve heat transfer in an annulus heated on both walls.To study porous media insert,porous ribs are used on the outer and inner walls independently.The results show that when porous ribs are placed on the outer wall,although the heat transfer enhances,the pressure drop increment is so considerable that performance number (the ratio of heat transfer enhancement pressure increment,PN) is less than unity for all porous rib heights and porous media permeabilities that are studied.On the other hand,the PN of cases where porous ribs were placed on the inner wall depends on the Darcy number (Da).For example,for ribs with Da=0.1 and Da=0.0001,the maximum performance number,PN=4,occurs at the porous ribs height to hydraulic diameter ratios H/Dh=1 and H/Dh=0.25.Under these conditions,heat transfer is enhanced by two orders of magnitude.It is found that adding 5% nanoparticles to the base fluid in the two aforementioned cases improves the Nusselt number and PN by 10%–40%.
基金Financial support from the National Nature Science Foundation of China(50179009)National Nature Science Foundation of China for important project(50139030)
文摘The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil body with leakage are discussed. Then temperature tracer model is established according to stable heat conduction theory. In such model, the concentrated seepage passage is simplified into a circular pipe as a boundary condition. The location, scope and flow-velocity of the concentrated leakage are estimated via ichnography of the lowest temperature based on temperature data from detecting wells by quantitative computation and qualitative analysis. In case study, the distribution characteristic of temperature (including temperature data of water in reservoir, drainage pipes and tail pond) can be interpreted by this model. A modified model is also set up, applied for detected data at different cross-sections of the leakage passage, in which the temperature data are rectified according to distances from data locations to calculating section. Finally, the model is solved by numerical iterative method, and the possible error of this theoretical model is discussed. The permeability coefficient in leakage area is identical with that of normal soil in magnitude after anti-seepage repairing accomplished, which indicates this model is effective.
文摘The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.
文摘A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.
基金Supported by Tsinghua University Initiative Scientific Research Program(20131089319)
文摘Numerical calculations were conducted to simulate the flow and mass transfer in narrow membrane channels equipped with delta winglets, which are often used as longitudinal vortex generators to enhance heat transfer in heat exchanger applications. The channel consists of an impermeable solid wall and a membrane. The delta winglets are attached to the solid wall surface to enhance the mass transfer near the membrane surface and suppress the concentration polarization. The winglet performance was evaluated in terms of concentration polarization factor versus consumed pumping power. Calculations were implemented for NaCl solution flow in a membrane channel having a height of 2.0 mm for Reynolds numbers ranging from 400 to 1000. The delta wing- lets were optimized under equal pumping power condition, and the results of optimization suggest winglet height of 5/6 of the channel height, aspect ratio of 2.0, attack angle of 30% and a winglet interval equal to the channel height The optimal delta winglets were compared with the optimal rectangular winglets we found previously, and it is shown that the rectangular winglets yield a somewhat better performance than the delta winglets. @ 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
文摘This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.
基金This work is supported by the Project of National Natural Science Foundation of China (No. 50076014) and the Project of Major State Basic Research Program (No. G2000026303).
文摘The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China(Grant No.50476063)
文摘The present study numerically investigates the characteristics of three-dimensional turbulent flow and heat transfer in the channel with one corrugated wall heated with constant temperature by means of large eddy simulation.The corrugated wall is sinusoidal in the streamwise and spanwise directions.The Reynolds number in terms of bulk velocity and channel half-height is fixed at 2800 and the wave amplitude to wavelength ratio is varied in the rangeα/λ=0.01,0.02,0.04 in the streamwise direction andα/λ=0.01,0.02,0.04 in the spanwise direction.The results show that flow separation bubbles appear and near-wall streamwise vortices are generated with larger population in the upslope region of the bottom wall as wave amplitude increases.Compared with flat wall,the corrugated geometry increases the pressure coefficient and decreases the friction coefficient on the corrugated wall,and consequently increases the total drag coefficient owing to the increase of pressure coefficient,as expected,the heat transfer is higher.The waves in the spanwise direction converge the vortices into the trough along the streamwise direction and push them away from the bottom wall.Finally,thermal performance factor is defined and the effects of wave amplitude on the thermal performance are scrutinized.
基金funding from the European Union Seventh Framework Programme(FP7/2007-2013)under Grant Agreement No.233799(ERICKA)
文摘This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations foi: the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a comer fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.
基金financially supported by National Natural Science Foundation of China(Grant No.51305238)
文摘Heat and mass transfer between porous media and fluid is a complex coupling process, which is widely used in various fields of engineering applications, especially for natural and artificial fractures in oil and gas extraction. In this study, a new method is proposed to deal with the flow and heat transfer problem of steady flow in a fracture. The fluid flow in a fracture was described using the same method as Mohais, who considered a fracture as a channel with porous wall, and the perturbation method was used to solve the mathematical model. Unlike previous studies, the shear jump boundary condition proposed by Ochoa-Tapia and Whitaker was used at the interface between the fluid and porous media. The main methods were perturbation analysis and the application of shear jump boundary conditions. The influence of permeability, channel width, shear jump degree and effective dynamic viscosity on the flow and heat transfer in the channel was studied by analysing the analytical solution. The distribution of axial velocity in the channel with the change of the typical parameters and the sensitivity of the heat transfer was obtained.
基金supported by National Natural Science Foundation of China(No.51376019)
文摘The present study reports an experimental evaluation of heat transfer characteristic of R134a flow boiling in mi- cro-channel heat sink. The heat sink is composed of 30 parallel rectangular micro-channels with cross-sectional dimensions of 500μm width and depth, as well as total length 30ram. Experiments were conducted with heat flux up to 80.212 W/cm2, mass velocity ranging from 373.33 to 1244.44 kg/m2s, vapor quality ranging from 0.06 to 0.9. The wall temperature of heat sink heated could be controlled at around 50℃. Heat transfer coefficient could be up to 180 kW/mZK. Two dominating flow patterns were observed by analyzing boiling curves. The heat trans- fer characteristics of nucleate boiling and convective boiling were presented in the study. Revised correlations of R134a flow boiling in micro-channel heat sink were carded out with the consideration of nucleate boiling and convective boiling mechanisms.
基金supported by the National Natural Science Foundation of China(No.51376019)
文摘This paper presents effects of heating directions on heat transfer performance of R134 a flow boiling in micro-channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500mm width 500mm depth and 30 mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm^2 and 373.3 to 1244.4 kg/m^2 s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 k W/m^2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.
文摘In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.
文摘This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.