To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and stra...To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.展开更多
In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical f...In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces ofa PV (photovoltaic) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers "Nu = a'(Ra)b'', and surface temperature versus dimensionless height (Ts - T∞ = c.(z/h)d). The constant values for "a", "b", "c" and "d" were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels.展开更多
When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to co...When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.展开更多
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between th...A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.展开更多
The heat transfer and mass transfer fin efficiencies were analyzed numerically to show that popular models for heat transfer fm efficiency for circular fins are not always reasonable. The numerical results show that t...The heat transfer and mass transfer fin efficiencies were analyzed numerically to show that popular models for heat transfer fm efficiency for circular fins are not always reasonable. The numerical results show that the effective heat transfer area of a circular fin increases several times faster than that of a straight fin for the same tube radius. Then, a simple but accurate heat transfer fin efficiency model was developed and verified by numerical results for a wide range of fin designs. This model predicts the heat transfer fin efficiency with absolute errors of less than 1%. The heat transfer and mass transfer fin efficiencies were found to be quite different for typical air flow with low relative humidity. Thus, these two fin efficiencies should not be assumed to be equal and a mass transfer fin efficiency model was developed, based on the heat transfer fin efficiency model. These heat transfer and mass transfer fin efficiencies are very useful for more accurate prediction for a wide range of practical applications.展开更多
基金Project(51304171)supported by the National Natural Science Foundation of ChinaProject(E2013203248)supported by Natural Science Foundation of Hebei Province of ChinaProject(NECSR-201209)supported by Open Foundation of the National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,China
文摘To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.
文摘In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces ofa PV (photovoltaic) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers "Nu = a'(Ra)b'', and surface temperature versus dimensionless height (Ts - T∞ = c.(z/h)d). The constant values for "a", "b", "c" and "d" were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772134 and 11172203)the National Basic Research Program of China (Grant No. 2009CB724103)
文摘When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.
文摘A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB706904)Beijing Natural Science Foundation(Grant No.3071001)
文摘The heat transfer and mass transfer fin efficiencies were analyzed numerically to show that popular models for heat transfer fm efficiency for circular fins are not always reasonable. The numerical results show that the effective heat transfer area of a circular fin increases several times faster than that of a straight fin for the same tube radius. Then, a simple but accurate heat transfer fin efficiency model was developed and verified by numerical results for a wide range of fin designs. This model predicts the heat transfer fin efficiency with absolute errors of less than 1%. The heat transfer and mass transfer fin efficiencies were found to be quite different for typical air flow with low relative humidity. Thus, these two fin efficiencies should not be assumed to be equal and a mass transfer fin efficiency model was developed, based on the heat transfer fin efficiency model. These heat transfer and mass transfer fin efficiencies are very useful for more accurate prediction for a wide range of practical applications.