Ore minerals in the sedimentary-type Cu deposits in the Xuanwei Formation overlying the Emeishan basalt are dominated by copper sulfides and native copper. As the ores mostly exhibit concretionary structure, previous ...Ore minerals in the sedimentary-type Cu deposits in the Xuanwei Formation overlying the Emeishan basalt are dominated by copper sulfides and native copper. As the ores mostly exhibit concretionary structure, previous researchers named them the "Madouzi-type Copper Deposit". Here the authors carried out mineralogical and isotopic studies on copper nodules in this ore deposit. The mineralogical study shows that copper nodules are composed of copper sulfides that have been cemented by ferruginous amorphous minerals, clay, and carbonaceous fragments in the modes of metasomatism and sedimentation. The nodules are preliminarily present as aggregates of gelatinous material. The isotopic analysis shows that the δ^13CPDB values of anhraxolite are within the range of-24.8‰-23.9‰, indicating that the anthraxolite is the product of sedimentary metamorphism of in-situ plants. The δ^34SV-CDT values of chalcocite are within the range of 7.6‰-13.1‰, close to those (about 11%~) of Permian seawater. The δ^34SV-CDT values of bornite and chalcopyrite are 21.6‰-22.2‰, similar to the sulfur isotopic composition (20‰) of marine sulfate, indicative of different sources of sulfur. The above characteristics indicate that the copper nodules were formed in such a process that Cu-bearing basalt underwent weathering-leaching and copper-bearing material was transported into waters (e.g., rivers, lakes, and swamps) and then adsorbed on clay and ferruginous amorphous mineral fragments. Then, the copper-bearing material was suspended and transported in the form of gelinite. In lake or swamp environment it was co-deposited with sediments to form copper nodules. At later stages there occurred metasomatism and hydrothermal superimposition, followed by the replacement of chalcocite by bornite and the superimposition of chalcopyrite over bornite, finally resulting in the formation of the "Madouzi-type" nodular copper deposit.展开更多
Lithologically, two kinds of chert can be recognized in the Middle-Upper Permian from the Tieqiao section in Laibin area, Guangxi, i.e., calcic chert occurring mainly in the Maokou Formation and pure chert mainly in t...Lithologically, two kinds of chert can be recognized in the Middle-Upper Permian from the Tieqiao section in Laibin area, Guangxi, i.e., calcic chert occurring mainly in the Maokou Formation and pure chert mainly in the Wujiaping Formation. Geochemical data show that both kinds of chert contain very low A1203 (0-0.23%) and TiO2 (0.001%-0.024%) and low ZREE (0.55-19.94 ppm, averaging 9.97 ppm), as well as high ratio of Fe2O3/TiO2 (17-443, averaging 111) and low ratio of A1203/(Al2O3+Fe203) (0-0.26, averaging 0.09). Given that the average value Ce anomalies in chert deposited in the ridge-proximal environment is about 0.29, and that in the pelagic environment is about 0.60, the low Ce anomalies in the Tieqiao chert (0.24-0.46, averaging 0.35) imply that they were deposited in an ocean basin with influence of submarine hydrothermal fluid and no input of terrigenous materials. The vertical variation of the silica abundance in strata (SAIS) in the Middle-Upper Permian strata, together with the Eu anomalies and the ratios of ∑REE/Fe, indicates a relationship between the hydrothermal activity and the Emeishan basalt eruption, and that submarine hydrothermal activity was stronger in the Upper Permian (the Wujiapingian Stage) than in the Middle Permian (the Maokou Stage).展开更多
The Yidun Island Arc in the Three Rivers (Jinsha River, Lancang River, Nujiang River) region of southwestern China is one of the most important Kuroko-type volcanogenic massive sulfide deposits (VMS) in China. Intra-a...The Yidun Island Arc in the Three Rivers (Jinsha River, Lancang River, Nujiang River) region of southwestern China is one of the most important Kuroko-type volcanogenic massive sulfide deposits (VMS) in China. Intra-arc rifting of Yidun Island occurred during the Late Carnian-Norian when VMS deposits such as the Gacun Pb-Zn-Cu deposit were formed. A bivalve fauna was found in fine-grained tuffaceous slate and in mineralized tuffaceous siltstone containing very high contents of Pb (45.01-103.37 ppm) and Zn (135.78-300.03 ppm) of the upper Tumugou Formation in the Changtai-Gacun volcanic-sedimentary rift basin. Stratigraphically, the bivalve-bearing beds are equivalents of the Gacun Pb-Zn-Cu deposits. The diversity of this bivalve fauna is very low. It consists mainly of the thin-shelled, epibyssate suspension-feeding bivalves Pergamidia eumenea and Parapergamidia changtaiensis, the burrowing large, elongated, suspension-feeding Trigonodus keuperinus and Unionites? sp., and occasional specimens of the endobyssate suspension-feeding Trigonodus? sp. and the deep burrowing suspension-feeding Pleuromya markiamensis. Individuals of the first four taxa are so abundant that the specimens are sometimes concentrated in shell beds, probably indicating a gregarious habit. This bivalve fauna is associated with internal moulds of cylindrical, slightly conical tubes most likely produced by a worm-shaped organism. Composition, morphology, diversity, and high abundance of this fauna, chemical features of the surrounding sediment, and the tectonic setting all suggest that this bivalve fauna lived in a deep-water environment in or around a hydrothermal vent system.展开更多
基金supported jointly by National Basic Research Program of China (Grant No. 2007CB411401)Special Fund of State Key Laboratory of Ore Deposit Geochemistry and National Natural Science Foundation of China (Grant No. 40773035)
文摘Ore minerals in the sedimentary-type Cu deposits in the Xuanwei Formation overlying the Emeishan basalt are dominated by copper sulfides and native copper. As the ores mostly exhibit concretionary structure, previous researchers named them the "Madouzi-type Copper Deposit". Here the authors carried out mineralogical and isotopic studies on copper nodules in this ore deposit. The mineralogical study shows that copper nodules are composed of copper sulfides that have been cemented by ferruginous amorphous minerals, clay, and carbonaceous fragments in the modes of metasomatism and sedimentation. The nodules are preliminarily present as aggregates of gelatinous material. The isotopic analysis shows that the δ^13CPDB values of anhraxolite are within the range of-24.8‰-23.9‰, indicating that the anthraxolite is the product of sedimentary metamorphism of in-situ plants. The δ^34SV-CDT values of chalcocite are within the range of 7.6‰-13.1‰, close to those (about 11%~) of Permian seawater. The δ^34SV-CDT values of bornite and chalcopyrite are 21.6‰-22.2‰, similar to the sulfur isotopic composition (20‰) of marine sulfate, indicative of different sources of sulfur. The above characteristics indicate that the copper nodules were formed in such a process that Cu-bearing basalt underwent weathering-leaching and copper-bearing material was transported into waters (e.g., rivers, lakes, and swamps) and then adsorbed on clay and ferruginous amorphous mineral fragments. Then, the copper-bearing material was suspended and transported in the form of gelinite. In lake or swamp environment it was co-deposited with sediments to form copper nodules. At later stages there occurred metasomatism and hydrothermal superimposition, followed by the replacement of chalcocite by bornite and the superimposition of chalcopyrite over bornite, finally resulting in the formation of the "Madouzi-type" nodular copper deposit.
基金supported by National Basic Research Program of China (Grant No. 2005CB422101)
文摘Lithologically, two kinds of chert can be recognized in the Middle-Upper Permian from the Tieqiao section in Laibin area, Guangxi, i.e., calcic chert occurring mainly in the Maokou Formation and pure chert mainly in the Wujiaping Formation. Geochemical data show that both kinds of chert contain very low A1203 (0-0.23%) and TiO2 (0.001%-0.024%) and low ZREE (0.55-19.94 ppm, averaging 9.97 ppm), as well as high ratio of Fe2O3/TiO2 (17-443, averaging 111) and low ratio of A1203/(Al2O3+Fe203) (0-0.26, averaging 0.09). Given that the average value Ce anomalies in chert deposited in the ridge-proximal environment is about 0.29, and that in the pelagic environment is about 0.60, the low Ce anomalies in the Tieqiao chert (0.24-0.46, averaging 0.35) imply that they were deposited in an ocean basin with influence of submarine hydrothermal fluid and no input of terrigenous materials. The vertical variation of the silica abundance in strata (SAIS) in the Middle-Upper Permian strata, together with the Eu anomalies and the ratios of ∑REE/Fe, indicates a relationship between the hydrothermal activity and the Emeishan basalt eruption, and that submarine hydrothermal activity was stronger in the Upper Permian (the Wujiapingian Stage) than in the Middle Permian (the Maokou Stage).
基金supported by National Science Foundation of China (Grant Nos. 40372014, 40172011, 40472013, 40743016 and 41173058)the fund of Cross Century Talent of Ministry of Education of China, the Distinguished Young Scholar grant of Sichuan Province and China Scholarship Council
文摘The Yidun Island Arc in the Three Rivers (Jinsha River, Lancang River, Nujiang River) region of southwestern China is one of the most important Kuroko-type volcanogenic massive sulfide deposits (VMS) in China. Intra-arc rifting of Yidun Island occurred during the Late Carnian-Norian when VMS deposits such as the Gacun Pb-Zn-Cu deposit were formed. A bivalve fauna was found in fine-grained tuffaceous slate and in mineralized tuffaceous siltstone containing very high contents of Pb (45.01-103.37 ppm) and Zn (135.78-300.03 ppm) of the upper Tumugou Formation in the Changtai-Gacun volcanic-sedimentary rift basin. Stratigraphically, the bivalve-bearing beds are equivalents of the Gacun Pb-Zn-Cu deposits. The diversity of this bivalve fauna is very low. It consists mainly of the thin-shelled, epibyssate suspension-feeding bivalves Pergamidia eumenea and Parapergamidia changtaiensis, the burrowing large, elongated, suspension-feeding Trigonodus keuperinus and Unionites? sp., and occasional specimens of the endobyssate suspension-feeding Trigonodus? sp. and the deep burrowing suspension-feeding Pleuromya markiamensis. Individuals of the first four taxa are so abundant that the specimens are sometimes concentrated in shell beds, probably indicating a gregarious habit. This bivalve fauna is associated with internal moulds of cylindrical, slightly conical tubes most likely produced by a worm-shaped organism. Composition, morphology, diversity, and high abundance of this fauna, chemical features of the surrounding sediment, and the tectonic setting all suggest that this bivalve fauna lived in a deep-water environment in or around a hydrothermal vent system.