Chromium coatings with and without Al_2O_3 or Y_2O_3 particles were prepared by chromizing the as-deposited Ni-film with and without Al_2O_3 or Y_2O_3 particles using a conventional pack-cementation method at 800 ℃. ...Chromium coatings with and without Al_2O_3 or Y_2O_3 particles were prepared by chromizing the as-deposited Ni-film with and without Al_2O_3 or Y_2O_3 particles using a conventional pack-cementation method at 800 ℃. The cyclic oxidation at 800 ℃ and hot corrosion in molten 75% Na2SO4+25% NaC1 at 800 ℃ of the three different chromizing coatings were investigated. The effects of Al_2O_3 or Y_2O_3 on the cyclic oxidation and hot corrosion behavior of the chromizing coatings were discussed. Microstructure results show that the codeposited Al_2O_3 or Y_2O_3 particles significantly retard the grain growth of the chromizing coating, which increases the cyclic oxidation and hot corrosion resistance of the chromizing coatings, due to the more rapid formation of purer and denser chromia scnle展开更多
基金Project(11531319)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘Chromium coatings with and without Al_2O_3 or Y_2O_3 particles were prepared by chromizing the as-deposited Ni-film with and without Al_2O_3 or Y_2O_3 particles using a conventional pack-cementation method at 800 ℃. The cyclic oxidation at 800 ℃ and hot corrosion in molten 75% Na2SO4+25% NaC1 at 800 ℃ of the three different chromizing coatings were investigated. The effects of Al_2O_3 or Y_2O_3 on the cyclic oxidation and hot corrosion behavior of the chromizing coatings were discussed. Microstructure results show that the codeposited Al_2O_3 or Y_2O_3 particles significantly retard the grain growth of the chromizing coating, which increases the cyclic oxidation and hot corrosion resistance of the chromizing coatings, due to the more rapid formation of purer and denser chromia scnle