We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By using nonequilibrium Green's function method, the heat generation Q is derive...We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By using nonequilibrium Green's function method, the heat generation Q is derived and studied in detail. The superconducting lead influences the heat generation significantly. An obvious step appears in Q - eV characteristics and the iocation of this step is related with the phonon frequency ωo. The heat generations exhibit very different behaviour in the condition eV 〈 △ and eV 〉 △ due to different tunneling mechanism. From the study of Q - eVg curves, there is an extra peak as eV 〉 △. The difference in this two cases is also shown in Q - ωo curve, an extra peak emerges as eV 〉 △.展开更多
We study the heat generation in quantum dot system with Fano resonance by nonequilibrium Green's functions method. The Fano resonance influences the heat generation significantly. As increases, the heat generation d...We study the heat generation in quantum dot system with Fano resonance by nonequilibrium Green's functions method. The Fano resonance influences the heat generation significantly. As increases, the heat generation decreases gradually. From the study of Q-eV curves, we llnd that the linewidth function F has huge influence on the heat generation. The Q-eV curves display obvious steps when the linewidth function is small. However, these steps disappear with F increasing. As the source-drain bias eV increases, the Q-eVg curves also display interesting behaviors.展开更多
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 10B022Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ4005
文摘We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By using nonequilibrium Green's function method, the heat generation Q is derived and studied in detail. The superconducting lead influences the heat generation significantly. An obvious step appears in Q - eV characteristics and the iocation of this step is related with the phonon frequency ωo. The heat generations exhibit very different behaviour in the condition eV 〈 △ and eV 〉 △ due to different tunneling mechanism. From the study of Q - eVg curves, there is an extra peak as eV 〉 △. The difference in this two cases is also shown in Q - ωo curve, an extra peak emerges as eV 〉 △.
基金Supported by the National Natural Science Foundation of China under Grant No.11147189Hunan Provincial Natural Science Foundation of China under Grant Nos.11JJ4005,11JJ9018the the Scientific Research Fund of Hunan Provincial Education Department,China under Grant No.10B022
文摘We study the heat generation in quantum dot system with Fano resonance by nonequilibrium Green's functions method. The Fano resonance influences the heat generation significantly. As increases, the heat generation decreases gradually. From the study of Q-eV curves, we llnd that the linewidth function F has huge influence on the heat generation. The Q-eV curves display obvious steps when the linewidth function is small. However, these steps disappear with F increasing. As the source-drain bias eV increases, the Q-eVg curves also display interesting behaviors.