Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method, a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for hi...Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method, a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for high-performance energetic material. IR spectrum, heat of formation, and detonation performances were predicted. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that the four N-NO2 BDEs are nearly equal to the values of 164.38 kJ/mol, which shows that the title compound is a stable compound. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The crystal structure obtained by molec-ular mechanics belongs to P21 space group, with lattice parameters Z=2, a=13.8017 A, b=13.4072 A, c=5.5635 A.展开更多
The molecular structures, infrared spectra, heats of formation (HOFs), detonation proper- ties, chemical and thermal stabilities of several tetrahydro-[1,4]dioxino[2,3-d:5,6-d'] diimida- zole derivatives with diff...The molecular structures, infrared spectra, heats of formation (HOFs), detonation proper- ties, chemical and thermal stabilities of several tetrahydro-[1,4]dioxino[2,3-d:5,6-d'] diimida- zole derivatives with different substituents were studied using DFT-B3LYP method. The properties of the compounds with different groups such as -NO2, -NH2, -N3, and -ONO2 were further compared. The -NO2 and -ONO2 groups are effective substituents for in- creasing the densities of the compounds, while the substitution of -N3 group can produce the largest HOF. The compound with -NO2 group has the same detonation properties as 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, while the compound with -ONO2 group has lower detonation properties than those of hexahydro-1,3,5-trinitro-l,3,5-triazine. The na- ture bond orbital analysis reveals that the relatively weak bonds in the molecules are the bonds between substituent groups and the molecular skeletons as well as C-O bonds in the dioxin rings. The electron withdrawing groups (-NO2, -N3, and -ONO2) have induc- rive effects on the linkages between the groups and molecular skeletons. In addition, re- searches show that the electronegativities of the groups are related with the stabilities of the compounds. Considering detonation performance and thermal stability, the 1,5-dinitro-2,6- bis(trinitromethyl)-3a,4a,7a,8a-tetrahydro-[1,4]dioxino-[2,3-d:5,6-d'] diimidazole satisfies the requirements of high energy density materials.展开更多
Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6- 311+G^** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo- 4,6-dinitrophenol. The assigned infrared sp...Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6- 311+G^** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo- 4,6-dinitrophenol. The assigned infrared spectrum is obtained and used to compute the thermodynamic properties. The results show that there are four main characteristic regions in the calculated IR spectra of the title compound. The detonation velocities and pressures are also evaluated by using Kamlet-Jacobs equations based on the calculated density and condensed phase heat of formation. Thermal stability and the pyrolysis mechanism of 2- diazo-4,6-dinitrophenol are investigated by calculating the bond dissociation energies at the B3LYP/6-311+G^** level.展开更多
In order to search for high energy density materials,various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed.Density functional theory was employed to investigate the relationships betwe...In order to search for high energy density materials,various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed.Density functional theory was employed to investigate the relationships between the structures and properties.The calculated results indicated that the properties of these designed compounds were influenced by the energetic groups and heterocyclic substituents.The-N3 energetic group was found to be the most effective substituent to improve the heats of formation of the designed compounds while the tetrazole ring/-C(NO_(2))_(3) group contributed much to the values of detonation properties.The analysis of bond orders and bond dissociation energies showed that the addition of-NHNH2,-NHNO_(2),-CH(NO_(2))_(3) and-C(NO_(2))_(3) groups would decrease the bond dissociation energies remarkably.Compounds A8,B8,C8,D8,E8,and F8 were finally screened as the potential candidates for high energy density materials since these compounds possess excellent detonation properties and acceptable thermal stabilities.Additionally,the electronic structures of the screened compounds were calculated.展开更多
A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature...A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.展开更多
We investigate initial-boundary-value problem for three-dimensional magnetohydrodynamic (MHD) system of compressible viscous heat-conductive flows and the three-dimensional full compressible Navier-Stokes equations....We investigate initial-boundary-value problem for three-dimensional magnetohydrodynamic (MHD) system of compressible viscous heat-conductive flows and the three-dimensional full compressible Navier-Stokes equations. We establish a blowup criterion only in terms of the derivative of velocity field, similar to the Beale^Kato-Majda type criterion for compressible viscous barotropic flows by Huang et al. (2011). The results indicate that the nature of the blowup for compressible MHD models of viscous media is similar to the barotropic compressible Navier-Stokes equations and does not depend on further sophistication of the MHD model, in particular, it is independent of the temperature and magnetic field. It also reveals that the deformation tensor of the velocity field plays a more dominant role than the electromagnetic field and the temperature in regularity theory. Especially, the similar results also hold for compressible viscous heat-conductive Navier-Stokes flows, which extend the results established by Fan et al. (2010), and I-Iuang and Li (2009). In addition, the viscous coefficients are only restricted by the physical conditions in this paper.展开更多
Based on the data at^40°N at different longitudes during different stratospheric sudden warming(SSW)events,the responses of zonal winds in the stratosphere,mesosphere and lower thermosphere to SSWs are studied in...Based on the data at^40°N at different longitudes during different stratospheric sudden warming(SSW)events,the responses of zonal winds in the stratosphere,mesosphere and lower thermosphere to SSWs are studied in this paper.The variations of zonal wind over Langfang,China(39.4°N,116.7°E)by MF radar and the modern era retrospective-analysis for research and applications(MERRA)wind data during 2010 and 2013 SSW and over Fort Collins,USA(41°N,105°W)by lidar and MERRA wind data during 2009 SSW are compared.Results show that the zonal wind at^40°N indeed respond to the SSWs while different specifics are found in different SSW events or at different locations.The zonal wind has significant anomalies during the SSWs.Over Langfang,before the onset of 2010 and 2013 SSW,the zonal wind reverses from eastward to westward below about 60–70 km and accelerates above this region,while westward wind prevails from 30 to 100 km after the onset of2010 SSW,and westward wind prevails in 30–60 and 85–100 km and eastward wind prevails in 60–85 km after the onset of2013 SSW.Over Fort Collins during 2009 SSW,eastward wind reverses to westward in 20–30 km before the onset while westward wind prevails in 20–30 and 60–97 km and eastward wind prevails in 30–60 and in 97–100 km after the onset.Moreover,simulations by the specified dynamics version of the whole atmosphere community climate model(SD-WACCM)are taken to explain different responding specifics of zonal wind to SSW events.It is found that the modulation of planetary wave(PW)plays the main role.Different phases of PWs would lead to the different zonal wind along with longitudes and the different amplitudes and phases in different SSW events can lead to the different zonal wind responses.展开更多
Thermal cracking occurs in the plastic packaging materials due to the presence of moisturized micro-cavities in the material.The moisture resident in the micro-cavities gives rise to the internal vapor pressure that d...Thermal cracking occurs in the plastic packaging materials due to the presence of moisturized micro-cavities in the material.The moisture resident in the micro-cavities gives rise to the internal vapor pressure that drives the thermal expansion of micro-cavities as temperature rises.The plastic packaging materials are considered a class of thermo-hyperelastic materials,thus allowing the micro-cavities to thermally expand to the substantial extent before the cracking failure.The micro-cavities can be moisture-abundant(i.e.,wet) or substantially dry when cracking occurs.Cracking appears to be almost certain in the presence of wet cavities.The possibility of cracking in dry cavities turns to be two-sided:when the initial volume fraction of the micro-cavities is relatively small,cracking cannot occur in the dry cavities regardless of the phase transition temperature;when the initial cavity volume fraction is relatively large,cracking tends to occur in the dry cavities especially when the phase transition temperature is large.Because of the two-sided cracking possibility,the dry-cavity cracking mode presents a scenario that might reveal the mechanism of popcorning-type cracking failure in plastic packaging materials.展开更多
基金ACKNOWLEDGMENTS This work was supported by the Key Project of Henan Educational Committee (No.12A140004), China Postdoctoral Science Foundation (No.2013M531361), and Jiangsu Planned Projects for Postdoctoral Research Funds (No.1201015B).
文摘Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method, a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for high-performance energetic material. IR spectrum, heat of formation, and detonation performances were predicted. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that the four N-NO2 BDEs are nearly equal to the values of 164.38 kJ/mol, which shows that the title compound is a stable compound. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The crystal structure obtained by molec-ular mechanics belongs to P21 space group, with lattice parameters Z=2, a=13.8017 A, b=13.4072 A, c=5.5635 A.
文摘The molecular structures, infrared spectra, heats of formation (HOFs), detonation proper- ties, chemical and thermal stabilities of several tetrahydro-[1,4]dioxino[2,3-d:5,6-d'] diimida- zole derivatives with different substituents were studied using DFT-B3LYP method. The properties of the compounds with different groups such as -NO2, -NH2, -N3, and -ONO2 were further compared. The -NO2 and -ONO2 groups are effective substituents for in- creasing the densities of the compounds, while the substitution of -N3 group can produce the largest HOF. The compound with -NO2 group has the same detonation properties as 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, while the compound with -ONO2 group has lower detonation properties than those of hexahydro-1,3,5-trinitro-l,3,5-triazine. The na- ture bond orbital analysis reveals that the relatively weak bonds in the molecules are the bonds between substituent groups and the molecular skeletons as well as C-O bonds in the dioxin rings. The electron withdrawing groups (-NO2, -N3, and -ONO2) have induc- rive effects on the linkages between the groups and molecular skeletons. In addition, re- searches show that the electronegativities of the groups are related with the stabilities of the compounds. Considering detonation performance and thermal stability, the 1,5-dinitro-2,6- bis(trinitromethyl)-3a,4a,7a,8a-tetrahydro-[1,4]dioxino-[2,3-d:5,6-d'] diimidazole satisfies the requirements of high energy density materials.
文摘Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6- 311+G^** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo- 4,6-dinitrophenol. The assigned infrared spectrum is obtained and used to compute the thermodynamic properties. The results show that there are four main characteristic regions in the calculated IR spectra of the title compound. The detonation velocities and pressures are also evaluated by using Kamlet-Jacobs equations based on the calculated density and condensed phase heat of formation. Thermal stability and the pyrolysis mechanism of 2- diazo-4,6-dinitrophenol are investigated by calculating the bond dissociation energies at the B3LYP/6-311+G^** level.
基金This work was supported by the National Natural Science Foundation of China(No.11602121)the Program for Scientific Research Innovation Team in Colleges and Universities of Ji’nan(No.2018GXRC006).
文摘In order to search for high energy density materials,various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed.Density functional theory was employed to investigate the relationships between the structures and properties.The calculated results indicated that the properties of these designed compounds were influenced by the energetic groups and heterocyclic substituents.The-N3 energetic group was found to be the most effective substituent to improve the heats of formation of the designed compounds while the tetrazole ring/-C(NO_(2))_(3) group contributed much to the values of detonation properties.The analysis of bond orders and bond dissociation energies showed that the addition of-NHNH2,-NHNO_(2),-CH(NO_(2))_(3) and-C(NO_(2))_(3) groups would decrease the bond dissociation energies remarkably.Compounds A8,B8,C8,D8,E8,and F8 were finally screened as the potential candidates for high energy density materials since these compounds possess excellent detonation properties and acceptable thermal stabilities.Additionally,the electronic structures of the screened compounds were calculated.
文摘A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.
基金supported by National Natural Science Foundation of China(Grant Nos.11171236 and 71372189)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1273)+1 种基金Sichuan Youth Science and Technology Foundation(Grant No.2014JQ0003)China Postdoctoral Science Foundation(Grant No.2013M542285)
文摘We investigate initial-boundary-value problem for three-dimensional magnetohydrodynamic (MHD) system of compressible viscous heat-conductive flows and the three-dimensional full compressible Navier-Stokes equations. We establish a blowup criterion only in terms of the derivative of velocity field, similar to the Beale^Kato-Majda type criterion for compressible viscous barotropic flows by Huang et al. (2011). The results indicate that the nature of the blowup for compressible MHD models of viscous media is similar to the barotropic compressible Navier-Stokes equations and does not depend on further sophistication of the MHD model, in particular, it is independent of the temperature and magnetic field. It also reveals that the deformation tensor of the velocity field plays a more dominant role than the electromagnetic field and the temperature in regularity theory. Especially, the similar results also hold for compressible viscous heat-conductive Navier-Stokes flows, which extend the results established by Fan et al. (2010), and I-Iuang and Li (2009). In addition, the viscous coefficients are only restricted by the physical conditions in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 41104099)
文摘Based on the data at^40°N at different longitudes during different stratospheric sudden warming(SSW)events,the responses of zonal winds in the stratosphere,mesosphere and lower thermosphere to SSWs are studied in this paper.The variations of zonal wind over Langfang,China(39.4°N,116.7°E)by MF radar and the modern era retrospective-analysis for research and applications(MERRA)wind data during 2010 and 2013 SSW and over Fort Collins,USA(41°N,105°W)by lidar and MERRA wind data during 2009 SSW are compared.Results show that the zonal wind at^40°N indeed respond to the SSWs while different specifics are found in different SSW events or at different locations.The zonal wind has significant anomalies during the SSWs.Over Langfang,before the onset of 2010 and 2013 SSW,the zonal wind reverses from eastward to westward below about 60–70 km and accelerates above this region,while westward wind prevails from 30 to 100 km after the onset of2010 SSW,and westward wind prevails in 30–60 and 85–100 km and eastward wind prevails in 60–85 km after the onset of2013 SSW.Over Fort Collins during 2009 SSW,eastward wind reverses to westward in 20–30 km before the onset while westward wind prevails in 20–30 and 60–97 km and eastward wind prevails in 30–60 and in 97–100 km after the onset.Moreover,simulations by the specified dynamics version of the whole atmosphere community climate model(SD-WACCM)are taken to explain different responding specifics of zonal wind to SSW events.It is found that the modulation of planetary wave(PW)plays the main role.Different phases of PWs would lead to the different zonal wind along with longitudes and the different amplitudes and phases in different SSW events can lead to the different zonal wind responses.
基金supported by the National Natural Science Foundation of China (Grant No. 11172195)the Natural Science Foundation of Shanxi Province,China (Grant No. 2012011019-4)
文摘Thermal cracking occurs in the plastic packaging materials due to the presence of moisturized micro-cavities in the material.The moisture resident in the micro-cavities gives rise to the internal vapor pressure that drives the thermal expansion of micro-cavities as temperature rises.The plastic packaging materials are considered a class of thermo-hyperelastic materials,thus allowing the micro-cavities to thermally expand to the substantial extent before the cracking failure.The micro-cavities can be moisture-abundant(i.e.,wet) or substantially dry when cracking occurs.Cracking appears to be almost certain in the presence of wet cavities.The possibility of cracking in dry cavities turns to be two-sided:when the initial volume fraction of the micro-cavities is relatively small,cracking cannot occur in the dry cavities regardless of the phase transition temperature;when the initial cavity volume fraction is relatively large,cracking tends to occur in the dry cavities especially when the phase transition temperature is large.Because of the two-sided cracking possibility,the dry-cavity cracking mode presents a scenario that might reveal the mechanism of popcorning-type cracking failure in plastic packaging materials.