期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
化学放热系统环境温度和热爆炸延滞期的关系 被引量:5
1
作者 王鹏 杜志明 《含能材料》 EI CAS CSCD 2008年第2期156-159,共4页
以边缘超临界化学放热系统的"平方根反比定律"为理论基础,通过分析绝热系统热爆炸延滞期的定义,得出了绝热系统热爆炸延滞期在边缘超临界条件下的新计算方法。以此为基础,应用LambertW函数得出了均温系统和非均温系统在边缘... 以边缘超临界化学放热系统的"平方根反比定律"为理论基础,通过分析绝热系统热爆炸延滞期的定义,得出了绝热系统热爆炸延滞期在边缘超临界条件下的新计算方法。以此为基础,应用LambertW函数得出了均温系统和非均温系统在边缘超临界条件下的环境温度和热爆炸延滞期之间的函数关系。进而定义和计算了含能材料的高温点火可靠度。结果表明:边缘超临界化学放热系统的超临界环境温度和热爆炸延滞期之间的函数关系不是简单的数学函数,而是由化学放热系统的活化能、指前因子、反应热、比热容、密度等物化参数决定的复杂函数。 展开更多
关键词 军事化学与烟火技术 边缘超临界 化学放热系统 环境温度 热爆炸延滞期
下载PDF
熔铸炸药热爆炸临界工艺温度的计算方法 被引量:6
2
作者 罗一鸣 王浩 +1 位作者 蒋秋黎 王玮 《兵工自动化》 2012年第7期42-44,共3页
为评估熔铸炸药装药工艺的热安全性,提出一种热爆炸临界工艺温度的计算方法。以纯DNTF炸药的性能数据,计算不同工艺温度下的热爆炸延滞期,并将其与实际工艺处理时间进行比较,从而确定其热安全水平以及发生热爆炸的临界工艺温度值。计算... 为评估熔铸炸药装药工艺的热安全性,提出一种热爆炸临界工艺温度的计算方法。以纯DNTF炸药的性能数据,计算不同工艺温度下的热爆炸延滞期,并将其与实际工艺处理时间进行比较,从而确定其热安全水平以及发生热爆炸的临界工艺温度值。计算结果表明:在常规工艺条件下,处理DNTF炸药不会发生热爆炸反应;但随着工艺处理量的增加,发生热爆炸的危险性也会不断增加。该计算方法对于熔铸工艺参数的制定具有重要意义。 展开更多
关键词 熔铸炸药 热爆炸 临界工艺温度 爆炸概率 热爆炸延滞期 DNTF
下载PDF
ANPyO/NBR的热分解动力学及热安全性研究 被引量:3
3
作者 王洋 何志伟 +3 位作者 郭子如 程奥 孟祥武 张洪 《中国安全科学学报》 CAS CSCD 北大核心 2019年第5期62-66,共5页
为研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)与丁腈橡胶(NBR)造型粉的热安全性,通过水悬浮溶解蒸馏法将ANPyO制成ANPyO/NBR造型粉,运用热重和差示扫描量热法(TG-DSC)分析仪研究ANPyO/NBR的热分解反应行为,采用Kissinger法、Ozawa... 为研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)与丁腈橡胶(NBR)造型粉的热安全性,通过水悬浮溶解蒸馏法将ANPyO制成ANPyO/NBR造型粉,运用热重和差示扫描量热法(TG-DSC)分析仪研究ANPyO/NBR的热分解反应行为,采用Kissinger法、Ozawa法和多种积分法计算热分解动力学参数,得到ANPyO/NBR自加速分解温度、热点火温度、热爆炸临界温度,并计算获得半径为1m的球形ANPyO/NBR样品在不同超临界环境温度下的延滞期。结果表明:造型粉ANPyO/NBR有良好的耐热性能,热安全性较高;环境温度对ANPyO/NBR造型粉热安全性起着决定性作用。 展开更多
关键词 2 6-二氨基-3 5-二硝基吡啶-1-氧化物(ANPyO) 丁腈橡胶(NBR) 热安全性 环境温度 热爆炸延滞期
下载PDF
NEPE推进剂热安全性的尺寸效应 被引量:8
4
作者 秦沛文 赵孝彬 +4 位作者 李军 秦超 程立国 苏晶 关红波 《火炸药学报》 EI CAS CSCD 北大核心 2016年第1期84-88,94,共6页
为了解NEPE推进剂热安全性的尺寸效应,在不同温度下对不同尺寸的NEPE推进剂药柱进行了热爆炸试验,测得其热爆炸延滞期,并计算得到不同尺寸NEPE推进剂药柱在90、100、110、120℃下的热分解反应速率;通过在药柱内部布置热电偶监测了尺寸为... 为了解NEPE推进剂热安全性的尺寸效应,在不同温度下对不同尺寸的NEPE推进剂药柱进行了热爆炸试验,测得其热爆炸延滞期,并计算得到不同尺寸NEPE推进剂药柱在90、100、110、120℃下的热分解反应速率;通过在药柱内部布置热电偶监测了尺寸为Ф100mm×100mm和Ф150mm×150mm药柱在90℃和100℃环境温度下的内部温度变化。结果表明,当温度高于76.2℃时,NEPE推进剂药柱的尺寸越大,反应速率常数越大;活化能与药柱的比表面积呈线性相关,比表面积越小,活化能越大,当NEPE推进剂药柱的比表面积小于0.02mm-1时,活化能(Ea)为179.3kJ/mol,指前因子(A)为4.62×1019s-1。硝酸酯增塑剂的存在是NEPE推进剂在200℃以下发生热爆炸的主要原因。 展开更多
关键词 NEPE推进剂 热安全性 尺寸效应 热爆炸延滞期 热爆炸试验 硝酸酯增塑剂
下载PDF
水分含量与含能物料热稳定性的相关性研究 被引量:3
5
作者 禄旭 丁黎 +2 位作者 常海 祝艳龙 王晗 《火炸药学报》 EI CAS CSCD 北大核心 2020年第5期526-530,I0004,共6页
为提高螺压改性双基推进剂压延工艺的安全性,研究了水分含量与改性双基推进剂压延物料热稳定性的相关性。利用烘箱法测得了压延过程中推进剂物料的含水量;利用热爆炸实验研究了不同含水量压延物料的热爆炸特征,获得了热爆炸延滞期随含... 为提高螺压改性双基推进剂压延工艺的安全性,研究了水分含量与改性双基推进剂压延物料热稳定性的相关性。利用烘箱法测得了压延过程中推进剂物料的含水量;利用热爆炸实验研究了不同含水量压延物料的热爆炸特征,获得了热爆炸延滞期随含水量的变化曲线;采用热重实验研究了含水量为30%(质量分数)的压延物料在70℃下的热失重变化,得到了失重过程中干燥速率随含水量的变化曲线,并根据Arrhenius公式计算得到其动力学参数。结果表明,第二、四、六遍压延物料的含水量分别为28.05%、27.17%、26.40%;随着含水量的增大,物料发生热爆炸的延滞期越长,由于水分与物料的结合方式不同,热爆炸延滞期随水分含量的变化曲线呈三段式规律变化。其中当含水量为10%~30%时,热爆炸延滞期随含水量的变化并不明显,因此含水量在10%~30%范围内的压延物料可进行多次压延以降低含水量,并提高推进剂的性能;通过Arrhenius公式计算得到该物料的活化能为31.68kJ/mol,指前因子为1.23s^-1。 展开更多
关键词 分析化学 含水量 改性双基推进剂 热稳定性 螺压工艺 热爆炸延滞期
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部