We consider a two-qubit Heisenberg XXZ chain as a resource for quantum teleportation via the standard teleportation protocol To. The effects of anisotropic on teleportation fidelity and entanglement are studied in det...We consider a two-qubit Heisenberg XXZ chain as a resource for quantum teleportation via the standard teleportation protocol To. The effects of anisotropic on teleportation fidelity and entanglement are studied in detail. We find anisotropic not only improves the criticM temperature Tc and criticM magnetic field Bc, beyond which quantum teleportation is inferior to classicM communication protocol, but also enhances the fidelity for fixed magnetic field B and temperature T. For entanglement teleportation, the effects of magnetic field on average fidelity and output entanglement are studied.展开更多
A set of experimental data obtained at the Institute of Physics and Power Engineering in a vertical bundle cooled with supercritical R-12 was analyzed. The test section was a 7-element bundle installed in a hexagonal ...A set of experimental data obtained at the Institute of Physics and Power Engineering in a vertical bundle cooled with supercritical R-12 was analyzed. The test section was a 7-element bundle installed in a hexagonal flow channel with three grid spacers. Data was collected at pressures of approximately 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above pseudocritical conditions. Analysis of the data has confirmed that there are three distinct heat-transfer regimes for forced convention in supercritical fluids: (1) normal heat transfer, (2) deteriorated heat transfer, and (3) enhanced heat transfer. It was also confirmed that the effects of spacers are evident which was previously observed in sub-critical experimental data. This work compares the wall and bulk fluid temperature data of the experiments to predictions based upon current 1-D correlations for heat transfer in supercritical fluids.展开更多
Unsteadiness of tip clearance flow with three different tip clearance sizes is numerically investigated in this paper. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases...Unsteadiness of tip clearance flow with three different tip clearance sizes is numerically investigated in this paper. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases, the un- steadiness exists when the size of the tip clearance is equal to or larger than design tip clearance size. The relative total pressure coefficient contours indicate that region of influence by tip leakage flow augments with the increase of tip clearance size at a fixed mass flow rate. Root Mean Square contours of static pressure distribution in the rotor tip region are provided to illustrate that for design tip clearance (1.1% tip chord) the strongest fluctuating region is located on pressure side of blade near leading edge, while for the larger tip clearance (2.2% tip chord), it is in the region of the interaction between the shock wave and the tip leakage flow.展开更多
基金National Natural Science Foundation of China under Grant Nos.10575017
文摘We consider a two-qubit Heisenberg XXZ chain as a resource for quantum teleportation via the standard teleportation protocol To. The effects of anisotropic on teleportation fidelity and entanglement are studied in detail. We find anisotropic not only improves the criticM temperature Tc and criticM magnetic field Bc, beyond which quantum teleportation is inferior to classicM communication protocol, but also enhances the fidelity for fixed magnetic field B and temperature T. For entanglement teleportation, the effects of magnetic field on average fidelity and output entanglement are studied.
文摘A set of experimental data obtained at the Institute of Physics and Power Engineering in a vertical bundle cooled with supercritical R-12 was analyzed. The test section was a 7-element bundle installed in a hexagonal flow channel with three grid spacers. Data was collected at pressures of approximately 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above pseudocritical conditions. Analysis of the data has confirmed that there are three distinct heat-transfer regimes for forced convention in supercritical fluids: (1) normal heat transfer, (2) deteriorated heat transfer, and (3) enhanced heat transfer. It was also confirmed that the effects of spacers are evident which was previously observed in sub-critical experimental data. This work compares the wall and bulk fluid temperature data of the experiments to predictions based upon current 1-D correlations for heat transfer in supercritical fluids.
基金National Basic Research Program 2007CB210104 of ChinaNational Natural Science Foundation of China,Grant 50736007
文摘Unsteadiness of tip clearance flow with three different tip clearance sizes is numerically investigated in this paper. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases, the un- steadiness exists when the size of the tip clearance is equal to or larger than design tip clearance size. The relative total pressure coefficient contours indicate that region of influence by tip leakage flow augments with the increase of tip clearance size at a fixed mass flow rate. Root Mean Square contours of static pressure distribution in the rotor tip region are provided to illustrate that for design tip clearance (1.1% tip chord) the strongest fluctuating region is located on pressure side of blade near leading edge, while for the larger tip clearance (2.2% tip chord), it is in the region of the interaction between the shock wave and the tip leakage flow.