A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sough...A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sought in order to maximize global efficiency of thermal to electrical energy conversion by minimizing fuel consumption. Once the pairs of operational variables, composition and filtrational velocity of gas inlet mixture were found, the optimal length and placement of thermoelectric elements within the reactor high thermal gradients were sought to maximize the electric current, thermoelements and system overall efficiency. A two temperature-resistance model for finite time thermodynamics was developed for the thermoelectric elements energy fluxes. Results indicate a distribution of current and efficiencies that presents a maximum at different themoelements length. Maximum values for current and system efficiency obtained were 44.3 m A and 2.5%, respectively.展开更多
Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harves...Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).展开更多
文摘A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sought in order to maximize global efficiency of thermal to electrical energy conversion by minimizing fuel consumption. Once the pairs of operational variables, composition and filtrational velocity of gas inlet mixture were found, the optimal length and placement of thermoelectric elements within the reactor high thermal gradients were sought to maximize the electric current, thermoelements and system overall efficiency. A two temperature-resistance model for finite time thermodynamics was developed for the thermoelectric elements energy fluxes. Results indicate a distribution of current and efficiencies that presents a maximum at different themoelements length. Maximum values for current and system efficiency obtained were 44.3 m A and 2.5%, respectively.
文摘Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).