热电联供(Combined Heat and Power, CHP)型微网集成了多种分布式能源,能源利用率较高,具有光明的应用前景。科学合理的系统规划是CHP型微网经济、高效运行的基础。基于此提出考虑需求侧热、电协同响应的CHP型微网多目标规划方法,规划...热电联供(Combined Heat and Power, CHP)型微网集成了多种分布式能源,能源利用率较高,具有光明的应用前景。科学合理的系统规划是CHP型微网经济、高效运行的基础。基于此提出考虑需求侧热、电协同响应的CHP型微网多目标规划方法,规划目标兼顾经济指标和碳排放指标。需求侧热电协同响应模型基于建筑物和热水箱的热力学特性,同时考虑可转移电负荷的调度,从而建立基于需求侧协同响应的CHP型微网多目标混合整数线性规划模型。以居民区CHP型微网规划为例进行算例仿真,验证了方法的有效性。结果表明,应用需求侧热电协同响应可降低CHP型微网所需配置的燃气锅炉和储热罐容量,使系统综合成本明显降低。展开更多
The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are ...The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.展开更多
2-hydroxynaphthylidene-1′-naphthylamine(HNAN) and –NO_(2) modified HNAN(HNAN-NO_(2)) Schiff base compounds were synthesized and exhibited strong visible light absorption(<650 nm). These compounds were added to po...2-hydroxynaphthylidene-1′-naphthylamine(HNAN) and –NO_(2) modified HNAN(HNAN-NO_(2)) Schiff base compounds were synthesized and exhibited strong visible light absorption(<650 nm). These compounds were added to poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE))ferroelectric polymer, obtaining composites with high photoelectric response under visible and infrared light. It was found that the modification of HNAN by the nitro group and the poling of the composites under a high electric field can greatly enhance the photoelectric response of the composites. The composites can generate high photovoltages of 1386 and352.7 mV under irradiation with near-infrared light(915 nm)and green light(532 nm). The mechanism of the photoelectric response of the composites under green light was explored and it was found that the response originates mainly from the coupling effect of the photothermal effect of the Schiff base and the pyroelectric effect of the ferroelectric polymer. The composites, which can be utilized as photodetector materials,are promising for next-generation artificial retina applications and the sensing capability of retina can be extended in a wide wavelength range from visible to infrared light.展开更多
Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report...Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.展开更多
文摘热电联供(Combined Heat and Power, CHP)型微网集成了多种分布式能源,能源利用率较高,具有光明的应用前景。科学合理的系统规划是CHP型微网经济、高效运行的基础。基于此提出考虑需求侧热、电协同响应的CHP型微网多目标规划方法,规划目标兼顾经济指标和碳排放指标。需求侧热电协同响应模型基于建筑物和热水箱的热力学特性,同时考虑可转移电负荷的调度,从而建立基于需求侧协同响应的CHP型微网多目标混合整数线性规划模型。以居民区CHP型微网规划为例进行算例仿真,验证了方法的有效性。结果表明,应用需求侧热电协同响应可降低CHP型微网所需配置的燃气锅炉和储热罐容量,使系统综合成本明显降低。
基金Project (No. 2002AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.
基金supported by the National Key Research and Development Program of China (2017YFA0701301)the National Natural Science Foundation of China (51373161 and51672261)。
文摘2-hydroxynaphthylidene-1′-naphthylamine(HNAN) and –NO_(2) modified HNAN(HNAN-NO_(2)) Schiff base compounds were synthesized and exhibited strong visible light absorption(<650 nm). These compounds were added to poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE))ferroelectric polymer, obtaining composites with high photoelectric response under visible and infrared light. It was found that the modification of HNAN by the nitro group and the poling of the composites under a high electric field can greatly enhance the photoelectric response of the composites. The composites can generate high photovoltages of 1386 and352.7 mV under irradiation with near-infrared light(915 nm)and green light(532 nm). The mechanism of the photoelectric response of the composites under green light was explored and it was found that the response originates mainly from the coupling effect of the photothermal effect of the Schiff base and the pyroelectric effect of the ferroelectric polymer. The composites, which can be utilized as photodetector materials,are promising for next-generation artificial retina applications and the sensing capability of retina can be extended in a wide wavelength range from visible to infrared light.
基金supported by the National Natural Science Foundation of China (21875212)the Key Program of National Natural Science Foundation (51632008)+2 种基金the Major R&D Plan of Zhejiang Natural Science Foundation (LD18E020001)the National Key Research and Development Program (2016YFA0200204)the Fundamental Research Funds for the Central Universities。
文摘Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.