The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ...The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.展开更多
The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results s...The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results show that the volume decrea-ses with the pressure increasing. We calculated the CtJ at various pressures and all the results satisfy mechanical stability crite-ria, thus the TiAl alloy is mechanically stable. The elastic constants? bulk modulus and shear modulus calculated are well in a-greement with the calculated values at zero the pressure. The bulk modulus and shear modulus increase with the pressure in-creasing, which reflects the deformation resistance, and accordingly, deformation resistance can be strengthened with the in-crease of pressure. The brittle nature of TiAl alloy turns to ductile nature in 10 - 20 GPa . The Debye temperature, linear ther-mal expansion and heat capacity are calculated using the quasi-harmonic Debye model under the pressure ranging from 0 to 50 GPa and the temperature ranging from 0 to 1 000 K, which are useful to investigate the effect of temperature and pressure on thermodynamic parameters. Finally, electronic structure is calculated at various pressures,and it can be found that the peak intensity decreases with increasing pressure and the the strength of d-d orbital of Ti is weakened but the ductility is enhanced.展开更多
An interpolation method was used to solve the Volterra integral equation of the second kind caused by interaction among thermal, electric and mechanical fields. The exact expressions for the transient responses of str...An interpolation method was used to solve the Volterra integral equation of the second kind caused by interaction among thermal, electric and mechanical fields. The exact expressions for the transient responses of stresses, electric displacement and electric potential in an orthotropic piezoelectric hollow cylinder were obtained by means of the finite integral transforms. From the sample numerical calculations, it is seen that the present method is suitable for an orthotropic piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation. The result can be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.展开更多
A coupled thermomechanical model is presented to investigate the thermoelastoplastic deformation mechanism of electromechanical equipments under the condition of electrocaloric shock. In the coupling model, differenti...A coupled thermomechanical model is presented to investigate the thermoelastoplastic deformation mechanism of electromechanical equipments under the condition of electrocaloric shock. In the coupling model, differentiating from the previous analyzing viewpoint that looked upon deformation work as additional heat source, temperature-field equation is established by considering the weakening role of deformation work on the intensity of internal heat source; in the process of setting up displacement-field equation, G-derivative of nonlinear functional is introduced into the traditional theory of elastoplastic finite deformation to simplify the expression of structural stiffness; stress-field equation is constructed by using the least square method to improve the stress solution obtained by constitutive equation. The presented model is converted into finite element program to simulate deforming process of 3-D structures with temperature-dependent material properties. As an example, thermal deformation analysis of Shanghai metro cars’ brake resistor is performed and compared with experimental results for illustrating the validity of the presented model.展开更多
With the values of parameters obtained from improved ligand-field theory,by taking into account all theirreducible representations and their components in EPI as well as all the levels and the admixtures of basic wave...With the values of parameters obtained from improved ligand-field theory,by taking into account all theirreducible representations and their components in EPI as well as all the levels and the admixtures of basic wavefunc-tions within d^3 electronic configuration,the R-line thermal broadenings(TB)of both MgO:Cr^(3+)and MgO:V^(2+)havemicroscopic-theoretically been calculated.The results are in very good agreement with the experimental data.It is foundthat the R-line TB of MgO:Cr^(3+)or MgO:V^(2+)comes from the first-order term of EPI.The elastic Raman scattering ofacoustic phonons plays a dominant role in R-line TB of MgO:Cr^(3+)or MgO:V^(2+).展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
In this paper, two AIE-active luminogens (Oxa-pTPE and Oxa-mTPE) constructed from tetraphenylethene and oxadiazole units were successfully synthesized and their thermal, optical and electronic properties were investig...In this paper, two AIE-active luminogens (Oxa-pTPE and Oxa-mTPE) constructed from tetraphenylethene and oxadiazole units were successfully synthesized and their thermal, optical and electronic properties were investigated. By linking TPE to the oxadiazole core through meta-or para-position, the intramolecular conjugation is effectively controlled. Thanks to the intelligent molecular design and specific AIE feature, when fabricated as emissive layers in non-doped OLEDs, they exhibit blue or deep-blue emission with CIE coordinates of (0.17, 0.23) and (0.15, 0.12), and good efficiencies with ηC, max and ηP, max up to 1.52 cd A-1 and 0.84 Im W-1 , shedding some light on the construction of deep-blue AIE fluorophores.展开更多
A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up...A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up of two parts,thermal and mechanical analysis.In thermal analysis,the DG method is employed to simulate the temperature jump phenomenon,which satisfies the imperfect thermal contact condition in a straightforward manner.In mechanical analysis,the impenetrability condition is fulfilled through a DG approach with penalty functions.The Picard iteration procedure with a relaxation technique is also adopted to accelerate the rate of convergence and avoid numerical instability.Numerical examples show that the present method is an attractive approach for solving thermoelastic coupling problems caused by TCR.The methodology can also be expanded to solve problems with friction finite deformation contact,node-to-segment contact and node-to-surface contact,etc.in a straightforward manner.展开更多
基金Project(20131083) supported by the Doctoral Starting up Foundation of Liaoning Province,ClhinaProject(LT201304) supported by the Program for Liaoning Innovative Research Team in University,ChinaProject(2013201018) supported by the Key Technologies Research and Development Program of Liaoning Province,China
文摘The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207,51574206,51274175)International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)+3 种基金Science and Technology Major Project of Shanxi Province(No.MC2016-06)International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province(No.201604D131029)
文摘The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results show that the volume decrea-ses with the pressure increasing. We calculated the CtJ at various pressures and all the results satisfy mechanical stability crite-ria, thus the TiAl alloy is mechanically stable. The elastic constants? bulk modulus and shear modulus calculated are well in a-greement with the calculated values at zero the pressure. The bulk modulus and shear modulus increase with the pressure in-creasing, which reflects the deformation resistance, and accordingly, deformation resistance can be strengthened with the in-crease of pressure. The brittle nature of TiAl alloy turns to ductile nature in 10 - 20 GPa . The Debye temperature, linear ther-mal expansion and heat capacity are calculated using the quasi-harmonic Debye model under the pressure ranging from 0 to 50 GPa and the temperature ranging from 0 to 1 000 K, which are useful to investigate the effect of temperature and pressure on thermodynamic parameters. Finally, electronic structure is calculated at various pressures,and it can be found that the peak intensity decreases with increasing pressure and the the strength of d-d orbital of Ti is weakened but the ductility is enhanced.
文摘An interpolation method was used to solve the Volterra integral equation of the second kind caused by interaction among thermal, electric and mechanical fields. The exact expressions for the transient responses of stresses, electric displacement and electric potential in an orthotropic piezoelectric hollow cylinder were obtained by means of the finite integral transforms. From the sample numerical calculations, it is seen that the present method is suitable for an orthotropic piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation. The result can be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.
文摘A coupled thermomechanical model is presented to investigate the thermoelastoplastic deformation mechanism of electromechanical equipments under the condition of electrocaloric shock. In the coupling model, differentiating from the previous analyzing viewpoint that looked upon deformation work as additional heat source, temperature-field equation is established by considering the weakening role of deformation work on the intensity of internal heat source; in the process of setting up displacement-field equation, G-derivative of nonlinear functional is introduced into the traditional theory of elastoplastic finite deformation to simplify the expression of structural stiffness; stress-field equation is constructed by using the least square method to improve the stress solution obtained by constitutive equation. The presented model is converted into finite element program to simulate deforming process of 3-D structures with temperature-dependent material properties. As an example, thermal deformation analysis of Shanghai metro cars’ brake resistor is performed and compared with experimental results for illustrating the validity of the presented model.
基金supported partially by National Natural Science Foundation of China under Grant No.40841012
文摘With the values of parameters obtained from improved ligand-field theory,by taking into account all theirreducible representations and their components in EPI as well as all the levels and the admixtures of basic wavefunc-tions within d^3 electronic configuration,the R-line thermal broadenings(TB)of both MgO:Cr^(3+)and MgO:V^(2+)havemicroscopic-theoretically been calculated.The results are in very good agreement with the experimental data.It is foundthat the R-line TB of MgO:Cr^(3+)or MgO:V^(2+)comes from the first-order term of EPI.The elastic Raman scattering ofacoustic phonons plays a dominant role in R-line TB of MgO:Cr^(3+)or MgO:V^(2+).
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.
基金the National Science Foundation of China(21161160556)the National Basic Research Program(973program,2013CB834700)the Open Project of State Key Laboratory of Supramolecular Structure and Materials(SKLSSM201302)
文摘In this paper, two AIE-active luminogens (Oxa-pTPE and Oxa-mTPE) constructed from tetraphenylethene and oxadiazole units were successfully synthesized and their thermal, optical and electronic properties were investigated. By linking TPE to the oxadiazole core through meta-or para-position, the intramolecular conjugation is effectively controlled. Thanks to the intelligent molecular design and specific AIE feature, when fabricated as emissive layers in non-doped OLEDs, they exhibit blue or deep-blue emission with CIE coordinates of (0.17, 0.23) and (0.15, 0.12), and good efficiencies with ηC, max and ηP, max up to 1.52 cd A-1 and 0.84 Im W-1 , shedding some light on the construction of deep-blue AIE fluorophores.
基金supported by the National Natural Science Foundation of China(Grant No. 10872104)the Fundamental Research Funds for the Central Universities(Grant No. FRF-BR-10.007A)
文摘A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up of two parts,thermal and mechanical analysis.In thermal analysis,the DG method is employed to simulate the temperature jump phenomenon,which satisfies the imperfect thermal contact condition in a straightforward manner.In mechanical analysis,the impenetrability condition is fulfilled through a DG approach with penalty functions.The Picard iteration procedure with a relaxation technique is also adopted to accelerate the rate of convergence and avoid numerical instability.Numerical examples show that the present method is an attractive approach for solving thermoelastic coupling problems caused by TCR.The methodology can also be expanded to solve problems with friction finite deformation contact,node-to-segment contact and node-to-surface contact,etc.in a straightforward manner.