期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
热电偶的检定与时效处理
1
作者 杨长林 《铁道机车车辆工人》 2002年第8期9-11,共3页
关键词 热电 检定 时效处理 热电极材料 不均匀性
下载PDF
Thermodynamic analysis of Li-Ni-Co-Mn-H2O system and synthesis of LiNi0.5Co0.2Mn0.3O2 composite oxide via aqueous process 被引量:2
2
作者 LI Yun-jiao LI Ling +6 位作者 SU Qian-ye LU Wei-sheng HAN Qiang LI Lin CHEN Yong-xiang DENG Shi-yi LEI Tong-xing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2668-2680,共13页
The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activi... The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activity range of 0.01-1.00.A predominant co-region of LiNiO2,LiCoO2 and LiMnO2 oxides(Li-Ni-Co-Mncomposite oxide)is found in the Li-Ni-Co-Mn-H2O potential-pH diagrams,in which the co-precipitation region expands towards lower pH with rising temperature,indicating the enhanced possibility of synthesizing Li-Ni-Co-Mn composite oxide in aqueous solution.The experimental results prove that it is feasible to prepare the LiNi0.5Co0.2Mn0.3O2 cathode materials(NCM523)by an aqueous routine.The as-prepared lithiated precursor and NCM523 both inherit the spherical morphology of the hydroxide precursor and the obtained NCM523 has a hexagonalα-NaFeO2 structure with good crystallinity.It is reasonable to conclude that the aqueous routine for preparing NCM cathode materials is a promising method with the guidance of the reliable potential-pH diagrams to some extent. 展开更多
关键词 aqueous process potential-pH diagrams THERMODYNAMICS LiNi0.5Co0.2Mn0.3O2 cathode materials
下载PDF
Synthesis and characterization of triclinic structural LiVPO_4F as possible 4.2 V cathode materials for lithium ion batteries 被引量:8
3
作者 钟胜奎 尹周澜 +1 位作者 王志兴 陈启元 《Journal of Central South University of Technology》 EI 2007年第3期340-343,共4页
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted un... A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles. 展开更多
关键词 lithium ion batteries cathode material LIVPO4F carbon-thermal reduction method
下载PDF
Hydrothermal Synthesis and Electrochemical Properties of Amorphous LiMoS2 as a High Capacity Anode Material for Lithium Ion Batteries
4
作者 Shuijin Yang Jutang Sun 《Journal of Chemistry and Chemical Engineering》 2010年第6期44-45,共2页
The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemi... The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities. 展开更多
关键词 LiMoS2 lithium ion batteries hydrothermal synthesis.
下载PDF
Steel-Tinplate as a Solar Wall Panel and Its Effectiveness
5
作者 Aivars Aboltins Guntis Ruskis Janis Palabinskis 《Journal of Energy and Power Engineering》 2012年第6期912-915,共4页
The aim of the research was to investigate black colored steel-tinplate use for absorber and covering material of the collector and compare the efficiency of three types of air heating collectors. This heated air can ... The aim of the research was to investigate black colored steel-tinplate use for absorber and covering material of the collector and compare the efficiency of three types of air heating collectors. This heated air can be exploited for drying of agricultural products, room ventilation and room heating etc. 0.1 × 0.5 × 1.0 meter long FPC (fiat-plate collector) with a sun following platform was built. Air velocity at the experiments was v = 0.9 m/s. Collectors of insulated and un-insulated surfaces with steel-tinplate absorber as a covering material warmed the ambient air up to 10-12 and 5-6 degrees correspondingly (at irradiance 800 W/m^2). This difference indicates the great importance of insulating the collector body. It can be explained with intense heat exchange between the absorber and ambient air which reduces the efficiency of the collector. There was good correlation with irradiance and the air heating degree. The investigations showed that more effective FPC had the collector with absorber tinplate in the middle of the collector body. At favorable weather conditions the heating degree of the ambient air at the outlet reaches 6-8 degrees more that at the outlet of the insulated collector covered by steel-tinplate. 展开更多
关键词 Solar energy air heating COLLECTOR solar wall ABSORBER steel-tinplate.
下载PDF
Physics towards next generation Li secondary batteries materials:A short review from computational materials design perspective 被引量:6
6
作者 OUYANG ChuYing CHEN LiQuan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第12期2278-2292,共15页
The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion ... The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion migration,electrode/electrolyte surface/interface,structural(phase)and thermodynamics stability of the electrode materials,physics of intercalation and deintercalation.The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed.A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems.In order to fasten the progress of the new materials discovery and design for the next generation LSB,the Materials Genome Initiative(MGI)for LSB materials is a promising strategy and the related requirements are highlighted. 展开更多
关键词 lithium secondary batteries physics problems computational materials design materials genome initiative
原文传递
Reduced CoNi2S4 nanosheets decorated by sulfur vacancies with enhanced electrochemical performance for asymmetric supercapacitors 被引量:3
7
作者 Yanpeng Liu Yuxiang Wen +6 位作者 Yanan Zhang Xiaogang Wu Haoqian Li Hangda Chen Juanjuan Huang Guohan Liu Shanglong Peng 《Science China Materials》 SCIE EI CSCD 2020年第7期1216-1226,共11页
Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related... Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related to the vacancies and impurities in the electrode.To investigate the effect of the vacancies on the electrochemical properties of the supercapacitor cathode material,the uniform reduced CoNi2S4(r-CoNi2S4)nanosheets with sulfur vacancies have been successfully prepared by a one-step hydrothermal method.And the formation of sulfur vacancies are characterized by Raman,X-ray photoelectron spectroscopy and other means.As the electrode for supercapacitor,the r-CoNi2S4 nanosheet electrode delivers a high capacity of 1918.9 Fg-1 at a current density of 1 A g-1,superior rate capability(87.9%retention at a current density of 20 A g-1)and extraordinary cycling stability.Compared with the original CoNi2S4 nanosheet electrode(1226 F g-1at current density of 1 A g-1),the r-CoNi2S4 nanosheet electrode shows a great improvement.The asymmetric supercapacitor based on the r-CoNi2S4 positive electrode and activated carbon negative electrode exhibits a high energy density of 30.3 Wh kg-1 at a power density of 802.1 W kg-1,as well as excellent long-term cycling stability.The feasibility and great potential of the device in practical applications have been successfully proved by lightening the light emitting diodes of three different colors. 展开更多
关键词 defect engineering sulfur vacancies electrochemical performance asymmetric supercapacitors
原文传递
Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries 被引量:3
8
作者 Liping Wang Haiquan Zhang +5 位作者 Chengxu Mou Qianling Cui Qijiu Deng Jing Xue Xinyi Dai Jingze Li 《Nano Research》 SCIE EI CAS CSCD 2015年第2期523-532,共10页
Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low th... Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries. 展开更多
关键词 calcium terephthalate CARBOXYLATE Li-ion batteries organic electrode
原文传递
Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries 被引量:10
9
作者 Shouli Li Aihua Li Ranran Zhang Yanyan He Yanjun Zhai Liqiang Xu 《Nano Research》 SCIE EI CAS CSCD 2014年第8期1116-1127,共12页
High yields of CoFe204, NiFe204 and CdFe204 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in... High yields of CoFe204, NiFe204 and CdFe204 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries. 展开更多
关键词 hierarchicalporous FERRITE lithium ion battery ball-in-ball
原文传递
Variable-temperature preparation and performance of NiCl_2 as a cathode material for thermal batteries 被引量:7
10
作者 刘文军 刘海萍 +2 位作者 毕四富 曹立新 孙越 《Science China Materials》 SCIE EI CSCD 2017年第3期251-257,共7页
Nickel(II) chloride materials were synthesized via a novel two-step variable-temperature method for the use as a cathode material in Li-B/NiCI2 cells with the LiCI-LiBr- LiF electrolyte. The influence of temperature... Nickel(II) chloride materials were synthesized via a novel two-step variable-temperature method for the use as a cathode material in Li-B/NiCI2 cells with the LiCI-LiBr- LiF electrolyte. The influence of temperature on its structure, surface morphology, and electrochemical performance was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements of single cells. XRD results showed that after pre-dehydration for 2 h at 270℃ followed by sintering for 5 h at 600℃, the crystal water in nickel chloride hexahydrate could be removed effectively. The SEM results showed that particles recombined to form larger coarse particles and presented a layered structure. Discharge tests showed that the 600℃-treated materials demonstrated remarkable specific capacities of 210.42 and 242.84 mA h g^-1 at constant currents of 0.5 and 2.0 A, respectively. Therefore, the Li-B/NiCI2 thermal battery showed excellent discharge performance. The present work demonstrates that NiCl2 is a promising cathode material for thermal batteries and this two-step variable-temperature method is a simple and useful method for the fabrication of NiCl2 materials. 展开更多
关键词 thermal battery nickel chloride variable temperature electrochemical performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部