Aim: To compare the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia, and to study the effect of humidity and heat on the content of nucleosides. Methods: The contents of nucleos...Aim: To compare the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia, and to study the effect of humidity and heat on the content of nucleosides. Methods: The contents of nucleosides were determined by using high performance capillary electrophoresis (HPCE). Beckman P/ACE System 5010 apparatus equipped with a UV detector and a Beckman untreated fused-silica capillary (57 cm 75 mm, 50 cm effective length) was used. Before sample injection, the capillary was rinsed with 1 molL-1 sodium hydroxide solution and running buffer for 5 min, respectively. A voltage of 20 kV was applied for the separation. Pressure injection was 586 kPa for 6 seconds, and the wavelength of detector was 254 nm. The running time was 20 min at 20 oC. The effect of humidity and heat on the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia was observed for 1, 3, 5 and 10 days at temperature 40 oC, and relative humidity 75%. Results: The content of nucleosides from natural Cordyceps sinensis was higher than that from cultured Cordyceps mycelia. But the contents of nucleosides from freshly collected natural Cordyceps sinensis were very low, even below the limit of quantitation. The contents of nucleosides from natural Cordyceps sinensis were significantly increased by humidity and heat, but this phenomenon was not observed in cultured Cordyceps mycelia. Conclusion: There are differences between the nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia. The nucleosides in natural Cordyceps sinensis may be derived from the degradation of nucleic acids. This implies that adenosine being used for the quality control of natural Cordyceps sinensis may have to be reconsidered.展开更多
High temperature is an important limiting factor to the improvement of wheat yield. When suffered hot stress,wheat will produce a series of heat shock proteins to adapt this adversity. In different upgrowth phases,or ...High temperature is an important limiting factor to the improvement of wheat yield. When suffered hot stress,wheat will produce a series of heat shock proteins to adapt this adversity. In different upgrowth phases,or different heat-resistant crop varieties,the heat shock protein exist differences. Therefore,study on differences of heat shock protein has significant theoretical and practical meaning for researching heat resistance of wheat. By using SDS-PAGE method,the inducing conditions and manifestation of heat shock protein were studied,which provided theoretical basis for yield increasing of wheat.展开更多
In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in...In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.展开更多
文摘Aim: To compare the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia, and to study the effect of humidity and heat on the content of nucleosides. Methods: The contents of nucleosides were determined by using high performance capillary electrophoresis (HPCE). Beckman P/ACE System 5010 apparatus equipped with a UV detector and a Beckman untreated fused-silica capillary (57 cm 75 mm, 50 cm effective length) was used. Before sample injection, the capillary was rinsed with 1 molL-1 sodium hydroxide solution and running buffer for 5 min, respectively. A voltage of 20 kV was applied for the separation. Pressure injection was 586 kPa for 6 seconds, and the wavelength of detector was 254 nm. The running time was 20 min at 20 oC. The effect of humidity and heat on the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia was observed for 1, 3, 5 and 10 days at temperature 40 oC, and relative humidity 75%. Results: The content of nucleosides from natural Cordyceps sinensis was higher than that from cultured Cordyceps mycelia. But the contents of nucleosides from freshly collected natural Cordyceps sinensis were very low, even below the limit of quantitation. The contents of nucleosides from natural Cordyceps sinensis were significantly increased by humidity and heat, but this phenomenon was not observed in cultured Cordyceps mycelia. Conclusion: There are differences between the nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia. The nucleosides in natural Cordyceps sinensis may be derived from the degradation of nucleic acids. This implies that adenosine being used for the quality control of natural Cordyceps sinensis may have to be reconsidered.
文摘High temperature is an important limiting factor to the improvement of wheat yield. When suffered hot stress,wheat will produce a series of heat shock proteins to adapt this adversity. In different upgrowth phases,or different heat-resistant crop varieties,the heat shock protein exist differences. Therefore,study on differences of heat shock protein has significant theoretical and practical meaning for researching heat resistance of wheat. By using SDS-PAGE method,the inducing conditions and manifestation of heat shock protein were studied,which provided theoretical basis for yield increasing of wheat.
基金the support provided by the Research&Technology Development Project of China National Petroleum Corporation(No.2008D-4704-2)
文摘In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.