In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the ...In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.展开更多
This paper introduces present state of industrialization development in flue gas desulfuration, including technological selection, state of design and contracting capability, localization of equipment, etc. in China. ...This paper introduces present state of industrialization development in flue gas desulfuration, including technological selection, state of design and contracting capability, localization of equipment, etc. in China. It points out main problems currently existed and presents proposals on promotion of desulfuration technology with selfowned intellectual property right, perfection of demonstrative projects and pushing forward localization of desulfuration equipment.展开更多
A DC (data center) demands air-conditioning power as large as the 1/3-1/2 of total electricity consumption. Thus, energy saving of cooling power of DC yields considerable effect on both economic and environmental vi...A DC (data center) demands air-conditioning power as large as the 1/3-1/2 of total electricity consumption. Thus, energy saving of cooling power of DC yields considerable effect on both economic and environmental views. PV (Photovoltaic) and absorption refrigerator with CGS (cogeneration systems) or gas boiler are possible power saving options. The waste warm air from DC would be utilized for greenhouse heating when DC and greenhouse locate near in the suburbs. In this study, the authors develop an energy network model to assess the potential contribution of DC as a major electric power and chilled air consumer as well as the warm air supplier in a district to the energy efficiency improvement. The evaporation heat of LNG (liquefied natural gas) utilization is also considered as well as PV, CGS. This model is applied to the cases of the urban area in Tokyo which involves athletic center, shops and hospital and the suburbs including greenhouse and then compared.展开更多
A large magnitude-9.0 earthquake struck northeast Japan on March 11, 2011. Thirty minutes later, a tsunami reached Tokyo Electric Power Corporation (TEPCO)'s Fukushima Daiichi nuclear power station, and the emergen...A large magnitude-9.0 earthquake struck northeast Japan on March 11, 2011. Thirty minutes later, a tsunami reached Tokyo Electric Power Corporation (TEPCO)'s Fukushima Daiichi nuclear power station, and the emergency diesel generators submerged under water. Three units of the reactor experienced meltdown, and hydrogen explosions occurred at reactor houses. The RIKEN Nishina Center (RNC) contributed to the radiation screening effort by providing human resources, instruments, and transportation. The RNC also carried out extraction work and sample tests for soil contamination. Last summer, RIKEN was legally required to save 15% (equivalent to 3.3 MW) of its allocated electricity in its contract, making it extremely difficult to conduct experiments using accelerators. Accelerator operation was thus reduced to a minimum during the first half of the year. The RNC has a gas-turbine-based co-generation system (CGS) with an electrical capacity of 6.5 MW. The CGS was operated non-stop until the end of the year. RIKEN is constructing two sets of CGSs, each with a capacity of 1.5 MW to be commissioned this autumn.展开更多
Increase in demand of electrical power for different purposes in Iraq leads increase towards to power plant system such as thermal power plant. Any thermal power plant requires water for processing, cooling, oilfields...Increase in demand of electrical power for different purposes in Iraq leads increase towards to power plant system such as thermal power plant. Any thermal power plant requires water for processing, cooling, oilfields, boiler feed and other miscellaneous uses including domestic requirements. The main parameter to measure the efficiency of thermal power plant is the availability of water and technology employed. Therefore, the thermal power plants like A1-Anbar thermal power station is built on the Euphrates River bank in the city of Ramadi in the middle part of Iraq. Depending on the field measurements and pervious measurements, the computation of river water level for different frequency periods was achieved to determine the inundation area of the plant and the required height of power plant intakes. The problems of intake operation include low flow rate of the river at intake that resulting low water level (minimum flow rate was recorded 107 m^3/s with water level 47.8 m), and annual sediments at intake that may be caused operation off. Therefore, any design for the intake or operation must consider the above problems. The study referred to the discharge for full operation is about 300 m^3/s and water level is 51.3 m to satisfy these requirements. The study suggested two solutions for this problem, first by using the groins and the second by building two weirs.展开更多
The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consi...The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consideration can be made by energy self-sufficient when all fish waste oil is processed into biodiesel and further converted to electricity and heat (for cooling) in a CHP (combined heat and power) unit. The purpose of the present paper is to discuss the profitability of such plants in southeast Asia. The economic model shows that electricity production is, due to the low electricity tariff, uneconomical (except during electricity blackout), even if cogeneration heat can be utilized. This prompt a design of the plant whereby the necessary heat for the biodiesel process is taken from the waste heat produced by the compressors of a CO2 cooling system. According to the calculations and assumptions of the present study, the profitability of biodiesel production from fish cleaning wastes in Vietnam depends strongly on the market prices for fish waste and fish oil. Different business case scenarios are described.展开更多
Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently hi...Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently high to make solar thermal attractive for generating electricity. The paper presents two conceptual coal-fired power station designs in which a solar sub-system augments heat to the feed heaters or to the boiler. The thermal and economic analyses showed enhanced system performance which indicates that solar power could be embedded into existing fossil fuel plants or new power stations. Integrating solar energy with existing or new fossil fuel based power plants could reduce the cost of stand-alone solar thermal power stations, reduce CO2 emissions and produce experience necessary to operate a full scale solar thermal electricity generation facility.展开更多
The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. ...The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.展开更多
基金Supported by the National Natural Science Foundation of China(21076202)
文摘In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
文摘This paper introduces present state of industrialization development in flue gas desulfuration, including technological selection, state of design and contracting capability, localization of equipment, etc. in China. It points out main problems currently existed and presents proposals on promotion of desulfuration technology with selfowned intellectual property right, perfection of demonstrative projects and pushing forward localization of desulfuration equipment.
文摘A DC (data center) demands air-conditioning power as large as the 1/3-1/2 of total electricity consumption. Thus, energy saving of cooling power of DC yields considerable effect on both economic and environmental views. PV (Photovoltaic) and absorption refrigerator with CGS (cogeneration systems) or gas boiler are possible power saving options. The waste warm air from DC would be utilized for greenhouse heating when DC and greenhouse locate near in the suburbs. In this study, the authors develop an energy network model to assess the potential contribution of DC as a major electric power and chilled air consumer as well as the warm air supplier in a district to the energy efficiency improvement. The evaporation heat of LNG (liquefied natural gas) utilization is also considered as well as PV, CGS. This model is applied to the cases of the urban area in Tokyo which involves athletic center, shops and hospital and the suburbs including greenhouse and then compared.
文摘A large magnitude-9.0 earthquake struck northeast Japan on March 11, 2011. Thirty minutes later, a tsunami reached Tokyo Electric Power Corporation (TEPCO)'s Fukushima Daiichi nuclear power station, and the emergency diesel generators submerged under water. Three units of the reactor experienced meltdown, and hydrogen explosions occurred at reactor houses. The RIKEN Nishina Center (RNC) contributed to the radiation screening effort by providing human resources, instruments, and transportation. The RNC also carried out extraction work and sample tests for soil contamination. Last summer, RIKEN was legally required to save 15% (equivalent to 3.3 MW) of its allocated electricity in its contract, making it extremely difficult to conduct experiments using accelerators. Accelerator operation was thus reduced to a minimum during the first half of the year. The RNC has a gas-turbine-based co-generation system (CGS) with an electrical capacity of 6.5 MW. The CGS was operated non-stop until the end of the year. RIKEN is constructing two sets of CGSs, each with a capacity of 1.5 MW to be commissioned this autumn.
文摘Increase in demand of electrical power for different purposes in Iraq leads increase towards to power plant system such as thermal power plant. Any thermal power plant requires water for processing, cooling, oilfields, boiler feed and other miscellaneous uses including domestic requirements. The main parameter to measure the efficiency of thermal power plant is the availability of water and technology employed. Therefore, the thermal power plants like A1-Anbar thermal power station is built on the Euphrates River bank in the city of Ramadi in the middle part of Iraq. Depending on the field measurements and pervious measurements, the computation of river water level for different frequency periods was achieved to determine the inundation area of the plant and the required height of power plant intakes. The problems of intake operation include low flow rate of the river at intake that resulting low water level (minimum flow rate was recorded 107 m^3/s with water level 47.8 m), and annual sediments at intake that may be caused operation off. Therefore, any design for the intake or operation must consider the above problems. The study referred to the discharge for full operation is about 300 m^3/s and water level is 51.3 m to satisfy these requirements. The study suggested two solutions for this problem, first by using the groins and the second by building two weirs.
文摘The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consideration can be made by energy self-sufficient when all fish waste oil is processed into biodiesel and further converted to electricity and heat (for cooling) in a CHP (combined heat and power) unit. The purpose of the present paper is to discuss the profitability of such plants in southeast Asia. The economic model shows that electricity production is, due to the low electricity tariff, uneconomical (except during electricity blackout), even if cogeneration heat can be utilized. This prompt a design of the plant whereby the necessary heat for the biodiesel process is taken from the waste heat produced by the compressors of a CO2 cooling system. According to the calculations and assumptions of the present study, the profitability of biodiesel production from fish cleaning wastes in Vietnam depends strongly on the market prices for fish waste and fish oil. Different business case scenarios are described.
文摘Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently high to make solar thermal attractive for generating electricity. The paper presents two conceptual coal-fired power station designs in which a solar sub-system augments heat to the feed heaters or to the boiler. The thermal and economic analyses showed enhanced system performance which indicates that solar power could be embedded into existing fossil fuel plants or new power stations. Integrating solar energy with existing or new fossil fuel based power plants could reduce the cost of stand-alone solar thermal power stations, reduce CO2 emissions and produce experience necessary to operate a full scale solar thermal electricity generation facility.
文摘The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.