Recent research progress and development of the palladium catalysts for methane combustion are described in this study.The influence of active species,precursor,solvent,preparation methodologies,support and dopant on ...Recent research progress and development of the palladium catalysts for methane combustion are described in this study.The influence of active species,precursor,solvent,preparation methodologies,support and dopant on the catalytic activity and thermal stability of the palladium catalysts was discussed.Results of deactivation and poisoning of palladium catalysts were analyzed.Furthermore,possible kinetic models and reaction mechanism were indicated for Pd catalysts.展开更多
Due to the environmental impact of energy usage and increased price of fusel fuel, consumers need to be encouraged to use renewable energy sources. The IHICSSWHS (indirect heating integrated collector storage solar w...Due to the environmental impact of energy usage and increased price of fusel fuel, consumers need to be encouraged to use renewable energy sources. The IHICSSWHS (indirect heating integrated collector storage solar water heater system) is one of the most economical systems. It incorporates the collection of a solar energy component and a hot water storage component in one unit. The objective of this study was to investigate ways to enhance the thermal performance of the system. Two configurations of the system were studied: system with double row HX (heat exchanger) and tube length of 16.2 m, and system with single row HX and tube length of 8.1 m and 10.8 m. The service water tube inside diameter was also varied to 10.7 mm and 17.1 mm The steady state continuity, momentum and energy equations were numerically solved, using FLUENT software. A standard k-w turbulent model and surface-to-surface radiation model were used. The result showed that the system of 10.8 m tube length and single row HX provided higher outlet temperature than the system of 16.2 m and double row HX. Therefore, a significant reduction in cost and power usage can be achieved by using a single row HX.展开更多
The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of t...The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of the major components in the heat sink is the heat spreader which must be designed to effectively conduct the heat dissipated from the chip to a system of fins or extended surfaces for convective heat transfer to a flow of coolant. The heat spreader design must provide the capability to dissipate the thermal energy generated by the chip. However, the design of the heat spreader is also dependent on the convection characteristics of the fins within the heat sink, as well the material and geometry of the heat spreader. This paper focuses on the optimization of heat spreaders in a heat sink for safe and efficient performance of electronic circuits. The results of the study show that, for air-cooled electronics, the convective effects may dominate the thermal transport performance of the heat spreader in the heat sink.展开更多
This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming ...This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming to a clean and sustainable energy system. The main TIRFE technologies are: cogeneration of H2 and EE (electric energy) by H2-BGSCW/TEU (biomass gasification in supercritical water integrated with a thermoelectric unit); use of H2 from biomass in oil refinery processes for production of light and clean derivatives; supply of 1-12 deficiency for methanol production from coal; carbon sequestration by a basket of technologies (exhausted petroleum and gas) wells, underground saline aquifers, forests and stockpile of cellulignin-CL-produced from forest residues); use of H2-BGSCW/TEU as district CHP (combined heat and power) with photovoltaic panels for EE, including electric car battery recharge; optimization of energy consumption by verticalization of the cities replacing low strength materials (bricks and common cement) by high performance concrete with addition of silica from rice husk. TIRFE helps to solve key problems of H2-BGSCW/TEU, such as materials, energy recovery, plugging, corrosion, economics and energy security for the first generation of plants, and organizes the development for the second generation. TIRFE can be incrementally implanted in existent and new cities.展开更多
A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-...A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.展开更多
Temperature measurement in biology and medical diagnostics, along with sensitive temperature probing in living cells, is of great importance; however, it still faces significant challenges. Metal nanoclusters (NCs) ...Temperature measurement in biology and medical diagnostics, along with sensitive temperature probing in living cells, is of great importance; however, it still faces significant challenges. Metal nanoclusters (NCs) with attractive luminescent properties may be promising candidates to overcome such challenges. Here, a novel one-step synthetic method is presented to prepare highly fluorescent copper NCs (CuNCs) in ambient conditions by using glutathione (GSH) as both the reducing agent and the protective layer preventing the aggregation of the as-formed NCs. The resultant CuNCs, with an average diameter of 2.3 nm, contain 1-3 atoms and exhibit red fluorescence (A^m = 610 nm) with high quantum yields (QYs, up to 5.0%). Interestingly, the fluorescence signal of the CuNCs is reversibly responsive to the environmental temperature in the range of 15-80 ℃. Furthermore, as the CuNCs exhibit good biocompatibility, they can pervade the MC3T3-E1 cells and enable measurements over the physiological temperature range of 15-45 ℃ with the use of the confocal fluorescence imaging method. In view of the facile synthesis method and attractive fluorescence properties, the as-prepared CuNCs may be used as photoluminescence thermometers and biosensors.展开更多
文摘Recent research progress and development of the palladium catalysts for methane combustion are described in this study.The influence of active species,precursor,solvent,preparation methodologies,support and dopant on the catalytic activity and thermal stability of the palladium catalysts was discussed.Results of deactivation and poisoning of palladium catalysts were analyzed.Furthermore,possible kinetic models and reaction mechanism were indicated for Pd catalysts.
文摘Due to the environmental impact of energy usage and increased price of fusel fuel, consumers need to be encouraged to use renewable energy sources. The IHICSSWHS (indirect heating integrated collector storage solar water heater system) is one of the most economical systems. It incorporates the collection of a solar energy component and a hot water storage component in one unit. The objective of this study was to investigate ways to enhance the thermal performance of the system. Two configurations of the system were studied: system with double row HX (heat exchanger) and tube length of 16.2 m, and system with single row HX and tube length of 8.1 m and 10.8 m. The service water tube inside diameter was also varied to 10.7 mm and 17.1 mm The steady state continuity, momentum and energy equations were numerically solved, using FLUENT software. A standard k-w turbulent model and surface-to-surface radiation model were used. The result showed that the system of 10.8 m tube length and single row HX provided higher outlet temperature than the system of 16.2 m and double row HX. Therefore, a significant reduction in cost and power usage can be achieved by using a single row HX.
文摘The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of the major components in the heat sink is the heat spreader which must be designed to effectively conduct the heat dissipated from the chip to a system of fins or extended surfaces for convective heat transfer to a flow of coolant. The heat spreader design must provide the capability to dissipate the thermal energy generated by the chip. However, the design of the heat spreader is also dependent on the convection characteristics of the fins within the heat sink, as well the material and geometry of the heat spreader. This paper focuses on the optimization of heat spreaders in a heat sink for safe and efficient performance of electronic circuits. The results of the study show that, for air-cooled electronics, the convective effects may dominate the thermal transport performance of the heat spreader in the heat sink.
文摘This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming to a clean and sustainable energy system. The main TIRFE technologies are: cogeneration of H2 and EE (electric energy) by H2-BGSCW/TEU (biomass gasification in supercritical water integrated with a thermoelectric unit); use of H2 from biomass in oil refinery processes for production of light and clean derivatives; supply of 1-12 deficiency for methanol production from coal; carbon sequestration by a basket of technologies (exhausted petroleum and gas) wells, underground saline aquifers, forests and stockpile of cellulignin-CL-produced from forest residues); use of H2-BGSCW/TEU as district CHP (combined heat and power) with photovoltaic panels for EE, including electric car battery recharge; optimization of energy consumption by verticalization of the cities replacing low strength materials (bricks and common cement) by high performance concrete with addition of silica from rice husk. TIRFE helps to solve key problems of H2-BGSCW/TEU, such as materials, energy recovery, plugging, corrosion, economics and energy security for the first generation of plants, and organizes the development for the second generation. TIRFE can be incrementally implanted in existent and new cities.
文摘A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.
基金This work was supported by National Natural Science Foundation of China (Nos. 51372265 and 21175060), the Natural Science Foundation of Jiangsu Province, China (No. BK20140392), the Open Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering of Nanjing University of Technology (2014, KL14-12), the Postdoctoral Research Foundation of Jiangsu Province, China (No. 1401058B), and the Science and Technology Project of Suzhou, China (Nos~ ZXG201428 and ZXG201401)~
文摘Temperature measurement in biology and medical diagnostics, along with sensitive temperature probing in living cells, is of great importance; however, it still faces significant challenges. Metal nanoclusters (NCs) with attractive luminescent properties may be promising candidates to overcome such challenges. Here, a novel one-step synthetic method is presented to prepare highly fluorescent copper NCs (CuNCs) in ambient conditions by using glutathione (GSH) as both the reducing agent and the protective layer preventing the aggregation of the as-formed NCs. The resultant CuNCs, with an average diameter of 2.3 nm, contain 1-3 atoms and exhibit red fluorescence (A^m = 610 nm) with high quantum yields (QYs, up to 5.0%). Interestingly, the fluorescence signal of the CuNCs is reversibly responsive to the environmental temperature in the range of 15-80 ℃. Furthermore, as the CuNCs exhibit good biocompatibility, they can pervade the MC3T3-E1 cells and enable measurements over the physiological temperature range of 15-45 ℃ with the use of the confocal fluorescence imaging method. In view of the facile synthesis method and attractive fluorescence properties, the as-prepared CuNCs may be used as photoluminescence thermometers and biosensors.