瞬变热环境下,热反应与环境参数是紧密联系的。本文基于最小二乘支持向量机LS-SVM(LeastSquares Support Vector Machine)理论,结合瞬变热环境下受试者的投票实验数据,试图将这种关系量化,以达到对瞬变热环境下整体热感觉预测的目的。...瞬变热环境下,热反应与环境参数是紧密联系的。本文基于最小二乘支持向量机LS-SVM(LeastSquares Support Vector Machine)理论,结合瞬变热环境下受试者的投票实验数据,试图将这种关系量化,以达到对瞬变热环境下整体热感觉预测的目的。通过样本测试对预测模型的验证结果表明,向冷环境过渡和向热环境过渡中误差﹤0.3的样本比例都达到了90%以上,预测结果较理想,并且预测精度优于BP神经网络所建立的模型。另外,考虑到热感觉的模糊性以及个体化差异造成的影响,还给出了测试样本集在置信水平为95%时的置信区间,能对测试样本的变化区间作出较为准确的判断。展开更多
Extending the atmospheric model top to high altitude is important for simulation of upper atmospheric phenomena,such as the stratospheric quasi-biennial oscillation.The high-top version of the Institute of Atmospheric...Extending the atmospheric model top to high altitude is important for simulation of upper atmospheric phenomena,such as the stratospheric quasi-biennial oscillation.The high-top version of the Institute of Atmospheric Physics Atmospheric General Circulation Model with 91 vertical layers(IAP-AGCML91)extends to the mesopause at about 0.01 hPa(~80 km).The high-top model with a fully resolved stratosphere is found to simulate a warmer stratosphere than the low-top version,except near the South Pole,thus reducing its overall cold bias in the stratosphere,and significantly in the upper stratosphere.This sensitivity is shown to be consistent with two separate mechanisms:larger shortwave heating and larger poleward stratospheric meridional eddy heat flux in the hightop model than in the low-top model.Results indicate a significant influence of vertical resolution and model top on climate simulations in IAP-AGCM.展开更多
This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifica...This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.展开更多
The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous ...The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.展开更多
According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat tran...According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat transfer through fabrics. Details were given to describe how conduction and convection affect temperature distribution and heat loss during heat transfer processes by taking advantage of the quick calculation of FEA software MSC.Marc. Experimental results show good agreement with the theoretical results.展开更多
High-temperature Phase Change Material (PCM) is used as a thermal storage medium of a heat-pipe receiver in an advanced solar dynamic system.With both void cavity and natural convection considered,thermal performance ...High-temperature Phase Change Material (PCM) is used as a thermal storage medium of a heat-pipe receiver in an advanced solar dynamic system.With both void cavity and natural convection considered,thermal performance of the heat-pipe receiver is numerically analyzed under gravity.The results indicate that the PCM contained in the integrated heat pipe performs an averaging function of heat loadings.The thermal performance of the heat-pipe receiver is stable and reliable.When a heating cycle is stable,the temperature fluctuations both on heat-pipe wall and in PCM canister remain less than 13 K throughout a sunlight and eclipse cycle.The utility of PCM is essentially improved.The maximum melting ratio of PCM is 92%.Under gravity,PCM melts more quickly with the effect of natural convection.Natural convection accelerates the process of phase changes.Numerical results are compared with the experimental results concerned.The accuracy of numerical model under gravity is verified.The experiment for the PCM canister on the ground can be well prepared with our numerical simulation.展开更多
In this paper a lumped parameter model of a two-pass gas-to-gas crossflow heat exchanger with high speed air flow has been presented for the investigation of its transieat behaviours. The effects of both the changes o...In this paper a lumped parameter model of a two-pass gas-to-gas crossflow heat exchanger with high speed air flow has been presented for the investigation of its transieat behaviours. The effects of both the changes of inlet temperature and flow rate on outlet temperature can be predicted with this model.The calculation results under typical conditions are compared with experimental results and good agreements are obtained.展开更多
文摘瞬变热环境下,热反应与环境参数是紧密联系的。本文基于最小二乘支持向量机LS-SVM(LeastSquares Support Vector Machine)理论,结合瞬变热环境下受试者的投票实验数据,试图将这种关系量化,以达到对瞬变热环境下整体热感觉预测的目的。通过样本测试对预测模型的验证结果表明,向冷环境过渡和向热环境过渡中误差﹤0.3的样本比例都达到了90%以上,预测结果较理想,并且预测精度优于BP神经网络所建立的模型。另外,考虑到热感觉的模糊性以及个体化差异造成的影响,还给出了测试样本集在置信水平为95%时的置信区间,能对测试样本的变化区间作出较为准确的判断。
基金supported by the National Natural Science Foundation of China grant number 41991282the National Major Research High Performance Computing Program of China grant number2016YFB0200800+1 种基金the National Natural Science Foundation of Chinagrant numbers 41630530 and 41706036the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)。
文摘Extending the atmospheric model top to high altitude is important for simulation of upper atmospheric phenomena,such as the stratospheric quasi-biennial oscillation.The high-top version of the Institute of Atmospheric Physics Atmospheric General Circulation Model with 91 vertical layers(IAP-AGCML91)extends to the mesopause at about 0.01 hPa(~80 km).The high-top model with a fully resolved stratosphere is found to simulate a warmer stratosphere than the low-top version,except near the South Pole,thus reducing its overall cold bias in the stratosphere,and significantly in the upper stratosphere.This sensitivity is shown to be consistent with two separate mechanisms:larger shortwave heating and larger poleward stratospheric meridional eddy heat flux in the hightop model than in the low-top model.Results indicate a significant influence of vertical resolution and model top on climate simulations in IAP-AGCM.
基金Project(51578548)supported by the National Natural Science Foundation of ChinaProject(2018JJ3202)supported by the Natural Science Foundation of Hunan Province,ChinaProject(17C0681)supported by the Educational Departmental Science Research of Hunan Province,China
文摘This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.
文摘The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.
文摘According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat transfer through fabrics. Details were given to describe how conduction and convection affect temperature distribution and heat loss during heat transfer processes by taking advantage of the quick calculation of FEA software MSC.Marc. Experimental results show good agreement with the theoretical results.
文摘High-temperature Phase Change Material (PCM) is used as a thermal storage medium of a heat-pipe receiver in an advanced solar dynamic system.With both void cavity and natural convection considered,thermal performance of the heat-pipe receiver is numerically analyzed under gravity.The results indicate that the PCM contained in the integrated heat pipe performs an averaging function of heat loadings.The thermal performance of the heat-pipe receiver is stable and reliable.When a heating cycle is stable,the temperature fluctuations both on heat-pipe wall and in PCM canister remain less than 13 K throughout a sunlight and eclipse cycle.The utility of PCM is essentially improved.The maximum melting ratio of PCM is 92%.Under gravity,PCM melts more quickly with the effect of natural convection.Natural convection accelerates the process of phase changes.Numerical results are compared with the experimental results concerned.The accuracy of numerical model under gravity is verified.The experiment for the PCM canister on the ground can be well prepared with our numerical simulation.
文摘In this paper a lumped parameter model of a two-pass gas-to-gas crossflow heat exchanger with high speed air flow has been presented for the investigation of its transieat behaviours. The effects of both the changes of inlet temperature and flow rate on outlet temperature can be predicted with this model.The calculation results under typical conditions are compared with experimental results and good agreements are obtained.