The effect of the cooling rate ranging from 1.4 °C/s to 3.5 °C/s on the solidification behavior of the sand-cast Mg?10Gd?3Y?0.4Zr alloy was studied by computer aided cooling curve analysis (CA-CCA). With the...The effect of the cooling rate ranging from 1.4 °C/s to 3.5 °C/s on the solidification behavior of the sand-cast Mg?10Gd?3Y?0.4Zr alloy was studied by computer aided cooling curve analysis (CA-CCA). With the increase in cooling rate, the nucleation temperature (Tα,N) increases from 634.8 °C to 636.3 °C, the minimum temperature (Tα,Min) decreases from 631.9 °C to 630.7 °C, the nucleation undercooling (ΔTN) increases from 2.9 °C to 5.6 °C, the beginning temperature of the eutectic reaction (Teut,N) increases, the time of the eutectic reaction shortens, solidus temperature decreases from 546.0 °C to 541.4 °C, and solidification temperature range (ΔTS) increases by 6.1 °C. The increased nucleation rate (N&) is supposed to be the main reason for the increased?TN. Increased value (Teut,N?Teut,G) and shortened time of the eutectic reaction cause the change in the volume fraction and morphology of the second phase.展开更多
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProjects(20120073120011,20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of the cooling rate ranging from 1.4 °C/s to 3.5 °C/s on the solidification behavior of the sand-cast Mg?10Gd?3Y?0.4Zr alloy was studied by computer aided cooling curve analysis (CA-CCA). With the increase in cooling rate, the nucleation temperature (Tα,N) increases from 634.8 °C to 636.3 °C, the minimum temperature (Tα,Min) decreases from 631.9 °C to 630.7 °C, the nucleation undercooling (ΔTN) increases from 2.9 °C to 5.6 °C, the beginning temperature of the eutectic reaction (Teut,N) increases, the time of the eutectic reaction shortens, solidus temperature decreases from 546.0 °C to 541.4 °C, and solidification temperature range (ΔTS) increases by 6.1 °C. The increased nucleation rate (N&) is supposed to be the main reason for the increased?TN. Increased value (Teut,N?Teut,G) and shortened time of the eutectic reaction cause the change in the volume fraction and morphology of the second phase.