Objective To prospectively evaluate the efficacy of Removing Stasis and Reducing Heat Formula in accelerating calculus clearance and improving lower urinary tract symptoms of patients with proximal ureteral calculi af...Objective To prospectively evaluate the efficacy of Removing Stasis and Reducing Heat Formula in accelerating calculus clearance and improving lower urinary tract symptoms of patients with proximal ureteral calculi after ureteroscopic Ho:YAG laser lithotripsy. Methods A total of 138 patients with proximal ureteral calculi underwent ureteroscopic Ho:YAG laser lithotripsy by a single endocrinologist. Stone size varied from 10 to 15 mm. After operation, the patients were randomly divided into three groups: the control group(group A), tamsulosin group(group B), and Removing Stasis and Reducing Heat Formula group(group C). The treatment lasted for 4 weeks or until stone clearance. The primary and secondary outcomes of the three groups at follow-up were assessed. Results Of the 131 patients available for follow-up, 44 cases were in the group A, 45 in the group B, and 42 in the group C, respectively. The stone free rate at 2 weeks in the groups B and C were significantly higher than that in the group A(95.56%, 97.62% vs. 79.55%; all P<0.05). The ureteral colic rate and mean time of fragment expulsion were significantly reduced in the groups B(4.44% and 7.86±4.99 days) and C(2.43% and 6.76±4.37 days) compared with the group A(22.73% and 11.54±9.89 days, all P<0.05). On the day of double-J ureteric stent removal, the group C differed significantly from the group A in the total International Prostate Symptom Score, irritative subscore, obstructive subscore, and quality of life score(all P<0.05). Conclusion Removing Stasis and Reducing Heat Formula in the medical expulsive therapy might be an effective modality for patients with calculus in the proximal uretera after ureteroscopic Ho:YAG laser lithotripsy.展开更多
The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks,creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater...The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks,creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater.The hydrothermal alteration of plagioclase microphenocrysts and basaltic glass in the pillow basalts from one dredge station(103°57.62′′W,12°50.55′N,water depth 2480 m)on the East Pacific Rise(EPR)near 13°N were analyzed using a scanning electron microscope(SEM)and energy dispersive X-ray spectrometry(EDS).The results show that the edges of the plagioclase microphenocrysts and the basaltic glass fragments are altered but the pyroxene and olivine microphenocrysts in the interior of the pillow basalts appear to be unaffected by the hydrothermal fluids.In addition,our results show that the chemical alteration at the rims of the plagioclase microphenocrysts and the edges of basaltic glass fragments can be divided into separate types of alteration.The chemical difference in hydrothermal alteration of the plagioclase microphenocrysts and the basaltic glass indicate that different degrees of hydrothermal fluid-solid phase interaction have taken place at the surface of the pillow basalts.If the degree of hydrothermal fluid-solid phase interaction is relatively minor,Si,Al,Ca and Na diffuse from the inside of the solid phase out and as a result these elements have a tendency to accumulate in the edge of the plagioclase microphenocrysts or basaltic glass.If the degree of hydrothermal fluid-solid phase interaction is relatively strong,Si,Al,Ca and Na also diffuse from the inside of solid phase out but these elements will have a relatively low concentration in the edge of the plagioclase microphenocrysts or basaltic glass.Based on the chemical variation observed in the edges of plagioclase microphenocrysts and basaltic glass,we estimate that the content of Si,Al and Fe in the edges of plagioclase microphenocrysts can have a variation of 10.69%,17.59%and 109%,respectively.Similarly,the Si,Al and Fe concentrations in the edges of basaltic glass can have a variation of 9.79%,16.30%and 37.83%,respectively,during the interaction of hydrothermal fluids and seafloor pillow basalt.展开更多
文摘Objective To prospectively evaluate the efficacy of Removing Stasis and Reducing Heat Formula in accelerating calculus clearance and improving lower urinary tract symptoms of patients with proximal ureteral calculi after ureteroscopic Ho:YAG laser lithotripsy. Methods A total of 138 patients with proximal ureteral calculi underwent ureteroscopic Ho:YAG laser lithotripsy by a single endocrinologist. Stone size varied from 10 to 15 mm. After operation, the patients were randomly divided into three groups: the control group(group A), tamsulosin group(group B), and Removing Stasis and Reducing Heat Formula group(group C). The treatment lasted for 4 weeks or until stone clearance. The primary and secondary outcomes of the three groups at follow-up were assessed. Results Of the 131 patients available for follow-up, 44 cases were in the group A, 45 in the group B, and 42 in the group C, respectively. The stone free rate at 2 weeks in the groups B and C were significantly higher than that in the group A(95.56%, 97.62% vs. 79.55%; all P<0.05). The ureteral colic rate and mean time of fragment expulsion were significantly reduced in the groups B(4.44% and 7.86±4.99 days) and C(2.43% and 6.76±4.37 days) compared with the group A(22.73% and 11.54±9.89 days, all P<0.05). On the day of double-J ureteric stent removal, the group C differed significantly from the group A in the total International Prostate Symptom Score, irritative subscore, obstructive subscore, and quality of life score(all P<0.05). Conclusion Removing Stasis and Reducing Heat Formula in the medical expulsive therapy might be an effective modality for patients with calculus in the proximal uretera after ureteroscopic Ho:YAG laser lithotripsy.
基金supported by the National Special Fund for the Twelfth Five Plan of the China Ocean Mineral Resources Research and Develop-ment Association(Grant No.DY125-12-R-02)the National Basic Research Program of China(Grant No.2013CB429700)+1 种基金the National Natural Science Foundation of China(Grant Nos.41325021,40830849 and 40976027)Shandong Provincial Natural Science Foundation of China for Distinguished Young Scholars(Grant No.JQ200913)
文摘The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks,creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater.The hydrothermal alteration of plagioclase microphenocrysts and basaltic glass in the pillow basalts from one dredge station(103°57.62′′W,12°50.55′N,water depth 2480 m)on the East Pacific Rise(EPR)near 13°N were analyzed using a scanning electron microscope(SEM)and energy dispersive X-ray spectrometry(EDS).The results show that the edges of the plagioclase microphenocrysts and the basaltic glass fragments are altered but the pyroxene and olivine microphenocrysts in the interior of the pillow basalts appear to be unaffected by the hydrothermal fluids.In addition,our results show that the chemical alteration at the rims of the plagioclase microphenocrysts and the edges of basaltic glass fragments can be divided into separate types of alteration.The chemical difference in hydrothermal alteration of the plagioclase microphenocrysts and the basaltic glass indicate that different degrees of hydrothermal fluid-solid phase interaction have taken place at the surface of the pillow basalts.If the degree of hydrothermal fluid-solid phase interaction is relatively minor,Si,Al,Ca and Na diffuse from the inside of the solid phase out and as a result these elements have a tendency to accumulate in the edge of the plagioclase microphenocrysts or basaltic glass.If the degree of hydrothermal fluid-solid phase interaction is relatively strong,Si,Al,Ca and Na also diffuse from the inside of solid phase out but these elements will have a relatively low concentration in the edge of the plagioclase microphenocrysts or basaltic glass.Based on the chemical variation observed in the edges of plagioclase microphenocrysts and basaltic glass,we estimate that the content of Si,Al and Fe in the edges of plagioclase microphenocrysts can have a variation of 10.69%,17.59%and 109%,respectively.Similarly,the Si,Al and Fe concentrations in the edges of basaltic glass can have a variation of 9.79%,16.30%and 37.83%,respectively,during the interaction of hydrothermal fluids and seafloor pillow basalt.