Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m...Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.展开更多
The magnetic properties and microstructure in a low cobalt Fe-25.5Cr-12Co alloy by different process of thermomagnetic treatment were investigated. It is found that magnetic properties are sensitive to parameters of t...The magnetic properties and microstructure in a low cobalt Fe-25.5Cr-12Co alloy by different process of thermomagnetic treatment were investigated. It is found that magnetic properties are sensitive to parameters of thermo- magnetic treatment process in magnetic field, including temperature, time and applied magnetic field. There are optimized isothermal aging temperature and time in different magnetic heat treatment conditions. High magnetic field strength could improve magnetic properties. Applied magnetic field has a great effect on microstructure of the Fe-25.5Cr-12Co alloy. The finer ferromagnetic d] particles with suitable c/a ratio by high magnetic field magnetic heat treatment are attributed to improvement the magnetic properties.展开更多
In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good elect...In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.展开更多
Electrical steel sheets with 6.5%(mas fraction) Si with good shapes and superior magnetic inductions were successfully produced by a specially designed processing route including ingot casting, hot rolling and warm ro...Electrical steel sheets with 6.5%(mas fraction) Si with good shapes and superior magnetic inductions were successfully produced by a specially designed processing route including ingot casting, hot rolling and warm rolling both with interpass thermal treatment, and final annealing. The sheets were of 0.2 mm and 0.3 mm thick over 140 mm width. A detailed study of the microstructural and textural evolutions from the hot rolling to annealing was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction. The hot rolled sheet characterized by near-equiaxed grains was dominated by the mixture of <001>//ND fiber(λ-fiber), <110>//RD fiber(α-fiber) and <111>//ND fiber(γ-fiber) textures owing to the partial recrystallization and strain induced boundary migration(SIBM) during the hot rolling interpass thermal treatment. The static recovery and SIBM during the warm rolling interpass thermal treatment result in large and elongated warm rolling grains. The warm rolling texture is dominated by obvious λ, Goss and strong γ-fiber textures. The application of the interpass thermal treatment during hot and warm rolling significantly enhances the impact of SIBM during annealing, which is responsible for the formation of the moderate λ-fiber, some near-λ fiber texture components and the obviously weakened γ-fiber texture in the annealed sheet, leading to a higher magnetic induction compared to the commercially produced 6.5% Si steel by chemical vapor deposition(CVD).展开更多
Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis rat...Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis ratio decreases with the increase of annealing temperature,and a shape transformation from ellipsoid to sphere occurs when the temperature increases to a critical point.The experimental results showed that the surface plasmon resonances depend greatly on the nanoparticles'shape and size,which is in accordance with the theoretical calculation based on discrete dipole approximation.The results of forward-scattering efficiency(FSE) and light trapping spectrum(LTS) showed that Ag nanoparticles annealed at 400°C could strongly enhance the light harvest than those annealed at 300 and 500°C,and that the LTS peak intensity of the former is 1.7 and 1.5 times stronger than those of the later two samples,respectively.The conclusions obtained in this paper showed that Ag ellipsoid nanoparticles with appropriate size is more favorable for enhancing the light trapping.展开更多
基金Project (51205102) supported by the National Natural Science Foundation of ChinaProject (2012M511401) supported by the China Postdoctoral Science FoundationProject (gf201101001) supported by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, China
文摘Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.
文摘The magnetic properties and microstructure in a low cobalt Fe-25.5Cr-12Co alloy by different process of thermomagnetic treatment were investigated. It is found that magnetic properties are sensitive to parameters of thermo- magnetic treatment process in magnetic field, including temperature, time and applied magnetic field. There are optimized isothermal aging temperature and time in different magnetic heat treatment conditions. High magnetic field strength could improve magnetic properties. Applied magnetic field has a great effect on microstructure of the Fe-25.5Cr-12Co alloy. The finer ferromagnetic d] particles with suitable c/a ratio by high magnetic field magnetic heat treatment are attributed to improvement the magnetic properties.
基金supported by the National Natural Science Foundation of China(Nos.51871068,51771060,51971071,52011530025)Domain Foundation of Equipment Advance Research of 13th Five-year Plan,China(No.61409220118)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1006)the Fundamental Research Funds for the Heilongjiang Universities,China(No.2020-KYYWF-0532)PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072021GIP1002)Zhejiang Province Key Research and Development Plan,China(No.2021C01086)。
文摘In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.
基金Projects(51004035,51374002,50734001)supported by the National Natural Science Foundation of ChinaProject(2012BAE03B00)supported by the National Key Technology R&D Program,China+1 种基金Project(2012AA03A506)supported by the High-tech R&D Program,ChinaProject(N120407009)supported by the Fundamental Research Funds for the Central Universities,China
文摘Electrical steel sheets with 6.5%(mas fraction) Si with good shapes and superior magnetic inductions were successfully produced by a specially designed processing route including ingot casting, hot rolling and warm rolling both with interpass thermal treatment, and final annealing. The sheets were of 0.2 mm and 0.3 mm thick over 140 mm width. A detailed study of the microstructural and textural evolutions from the hot rolling to annealing was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction. The hot rolled sheet characterized by near-equiaxed grains was dominated by the mixture of <001>//ND fiber(λ-fiber), <110>//RD fiber(α-fiber) and <111>//ND fiber(γ-fiber) textures owing to the partial recrystallization and strain induced boundary migration(SIBM) during the hot rolling interpass thermal treatment. The static recovery and SIBM during the warm rolling interpass thermal treatment result in large and elongated warm rolling grains. The warm rolling texture is dominated by obvious λ, Goss and strong γ-fiber textures. The application of the interpass thermal treatment during hot and warm rolling significantly enhances the impact of SIBM during annealing, which is responsible for the formation of the moderate λ-fiber, some near-λ fiber texture components and the obviously weakened γ-fiber texture in the annealed sheet, leading to a higher magnetic induction compared to the commercially produced 6.5% Si steel by chemical vapor deposition(CVD).
基金supported by the National Natural Science Foundation of China (Grant Nos. 61006050 and 51072051)the Natural Science Foundation of Beijing,China (Grant No. 2102042)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 10QG24)the National High Technology Research and Development Program ("863" Project)(Grant No. 2011AA050507)the National Basic Research Program of China("973" Project)(Grant No. 2010CB93380)
文摘Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis ratio decreases with the increase of annealing temperature,and a shape transformation from ellipsoid to sphere occurs when the temperature increases to a critical point.The experimental results showed that the surface plasmon resonances depend greatly on the nanoparticles'shape and size,which is in accordance with the theoretical calculation based on discrete dipole approximation.The results of forward-scattering efficiency(FSE) and light trapping spectrum(LTS) showed that Ag nanoparticles annealed at 400°C could strongly enhance the light harvest than those annealed at 300 and 500°C,and that the LTS peak intensity of the former is 1.7 and 1.5 times stronger than those of the later two samples,respectively.The conclusions obtained in this paper showed that Ag ellipsoid nanoparticles with appropriate size is more favorable for enhancing the light trapping.