The properties of matched streams, the simultaneous operation time, and the distance between integrated processes, are the main factors which determine whether the direct integration is feasible or not. According to w...The properties of matched streams, the simultaneous operation time, and the distance between integrated processes, are the main factors which determine whether the direct integration is feasible or not. According to whether such synthetic integration is economically better than the separate integration of each process, a mathematical formulation is established. The retrofit of reforming and arene processes in a certain petrochemical factory, which are independent each other, is chosen as a case study. By only considering the simultaneous operation time, two retrofit designs are proposed: one is that each of the two processes is separately integrated by itself, and the other is that the two processes are integrated comprehensively. Under different simultaneous operation hours, the energy-saving effects and the economic profits of the two designs are calculated, and furthermore, the critical simultaneous operation time for direct heat integration of the two processes is obtained. When the actual simultaneous operation time of the two processes is longer than the critical value, the direct heat integration of the two processes is better economically, and otherwise the separate heat integration for each process should be considered.展开更多
The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary ...The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous AI matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.展开更多
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro...This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.展开更多
Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation tha...Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation that is an operator generalization of the solution of thermo conduction equation. Then we seach for the solution of operator Fredholm integration equations, which provides us with a new approach for deriving some operator identities.展开更多
N-component Bariev model for correlated hopping under open boundary conditions in one dimension is studied in the framework of Bethe ansatz method. The energy spectrum and the related Bethe ansatz equations are obtained.
Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the ...Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the determination of excess molar volumes, V^E.At the same time, the excess viscosity and excess molar heatcapacities were calculated. The values of V^E, η~E and c^E_p werefitted to the Redlich-Kister equation. Good agreements were observed.The excess molar volumes are positive with a large maximum valuelocated in the central concentration range.展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. M...With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.展开更多
A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circul...A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.展开更多
In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimet...In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.展开更多
Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrod...Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.展开更多
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ...The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.展开更多
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impu...A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.展开更多
Silver nanofluids with three different volume fractions are prepared by a one-step chemical reduction method(Ultra-sound-assisted Membrane Reaction(UAMR)).The convective heat transfer and friction characteristics of s...Silver nanofluids with three different volume fractions are prepared by a one-step chemical reduction method(Ultra-sound-assisted Membrane Reaction(UAMR)).The convective heat transfer and friction characteristics of silver nanofluid in micro-pin fin heat sink are investigated experimentally.The results indicate that the pressure drops of nanofluids with different volume fractions have little difference.Compared to the base fluid(polyvinylpyrrolidone(PVP) solution),the pressure drop of nanofluids increases slightly at the same volume flow rate.When the flow rate is small,the increment is not obvious.The in-troduction of surfactant increases the fluid viscosity,so the pressure drops of nanofluids are larger than those of pure water,under the same flow rate.However,the maximum difference is no more than 10%.The volume fraction of silver nanoparticles significantly affects the convection heat transfer coefficient of micro-pin fin heat sink.The presence of nanoparticles improves significantly the heat transfer performance.However,high viscosity of the nanofluids hinders the heat transfer strengthening effect of nanofluids.In the present work,when the volume fraction of silver particles reaches to 0.012%,the thermal resistance of nanofluid gradually becomes lower than that of deionized water,which indicates the integrated heat transfer enhancement of nanofluids.展开更多
基金Supported by the National Natural Science Foundation of China(No. 20176045)Major State Basic Research Development Program of China(No. G20000263)
文摘The properties of matched streams, the simultaneous operation time, and the distance between integrated processes, are the main factors which determine whether the direct integration is feasible or not. According to whether such synthetic integration is economically better than the separate integration of each process, a mathematical formulation is established. The retrofit of reforming and arene processes in a certain petrochemical factory, which are independent each other, is chosen as a case study. By only considering the simultaneous operation time, two retrofit designs are proposed: one is that each of the two processes is separately integrated by itself, and the other is that the two processes are integrated comprehensively. Under different simultaneous operation hours, the energy-saving effects and the economic profits of the two designs are calculated, and furthermore, the critical simultaneous operation time for direct heat integration of the two processes is obtained. When the actual simultaneous operation time of the two processes is longer than the critical value, the direct heat integration of the two processes is better economically, and otherwise the separate heat integration for each process should be considered.
文摘The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous AI matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.
基金The National Natural Science Foundation of China(No.10962008,51061015)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.
基金The project supported by the President Foundation of the Chinese Academy of Sciences
文摘Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation that is an operator generalization of the solution of thermo conduction equation. Then we seach for the solution of operator Fredholm integration equations, which provides us with a new approach for deriving some operator identities.
文摘N-component Bariev model for correlated hopping under open boundary conditions in one dimension is studied in the framework of Bethe ansatz method. The energy spectrum and the related Bethe ansatz equations are obtained.
基金Supported by China Petrochemical Corporation (No. 200049).
文摘Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the determination of excess molar volumes, V^E.At the same time, the excess viscosity and excess molar heatcapacities were calculated. The values of V^E, η~E and c^E_p werefitted to the Redlich-Kister equation. Good agreements were observed.The excess molar volumes are positive with a large maximum valuelocated in the central concentration range.
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
文摘With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.
文摘A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.
基金Supported by the National Natural Science Foundation of China (50974055, 50476033) the Doctor Foundation Project from the Henan Polytechnic University (B2011 - 101)
文摘In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.
文摘Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.
基金Project(51171041) supported by the National Natural Science Foundation of China
文摘The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.
基金The National Natural Science Foundation of China(No.51078229)the Specialized Research Fund for the Doctoral Program of Higher Education(o.20100073110008)
文摘A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.
基金supported by the National Natural Science Foundation of China (Grant No. 51176002)National Basic Research Program of China (Grant No. 2011CB710704)funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (Grant No. PHR200906104)
文摘Silver nanofluids with three different volume fractions are prepared by a one-step chemical reduction method(Ultra-sound-assisted Membrane Reaction(UAMR)).The convective heat transfer and friction characteristics of silver nanofluid in micro-pin fin heat sink are investigated experimentally.The results indicate that the pressure drops of nanofluids with different volume fractions have little difference.Compared to the base fluid(polyvinylpyrrolidone(PVP) solution),the pressure drop of nanofluids increases slightly at the same volume flow rate.When the flow rate is small,the increment is not obvious.The in-troduction of surfactant increases the fluid viscosity,so the pressure drops of nanofluids are larger than those of pure water,under the same flow rate.However,the maximum difference is no more than 10%.The volume fraction of silver nanoparticles significantly affects the convection heat transfer coefficient of micro-pin fin heat sink.The presence of nanoparticles improves significantly the heat transfer performance.However,high viscosity of the nanofluids hinders the heat transfer strengthening effect of nanofluids.In the present work,when the volume fraction of silver particles reaches to 0.012%,the thermal resistance of nanofluid gradually becomes lower than that of deionized water,which indicates the integrated heat transfer enhancement of nanofluids.