The effects of roughness geometries and relative roughness height at the slip flow regime to investigate the thermal and hydraulic performances of microchannel have been considered in the present article using a therm...The effects of roughness geometries and relative roughness height at the slip flow regime to investigate the thermal and hydraulic performances of microchannel have been considered in the present article using a thermal Lattice Boltzmann Method(TLBM).A two dimensional 9-bit(D2Q9)single relaxation time(SRT)model is used to simulate this problem.In micro-flows,the local density variation is still relatively small,but the total density changes,therefore,in order to account this density variation and its effect on the kinematic viscosityν,a new relaxation time proposed by Niu et al.[13]is used.The roughness geometry is modeled as a series of square and circular riblets with a relative roughness height from 0%to 10%of the channel height.The friction coefficients in terms of Poiseuille number(Pn)and the dimensionless heat transfer rate in terms of Nusselt number(Nu)have been discussed in order to analyze the roughness effects.The thermal-hydraulic performance(η)is calculated considering the simultaneous effects of thermal and fluid friction(pressure drop)at the slip flow regime at Knudsen number,Kn,ranging from 0.01 to 0.10 with other controlling parameters for both kind of geometries.The results have been compared with previous published works and it is found to be in very good agreement.展开更多
This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer rate...This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer ratehas been discovered. The maximum increase of heat transfer rate procured by nanoporous layers is 133.3% higherthan the polished bare metals of surface roughness 0.2μm. This plays an imperative role in designing compact refrigerationsystems, chemical and thermal power plants. Experimental results picture a formidable upswing of58.3% heat transfer in chemically etched metals of surface roughness 3 μm, 133.3% in nanoporous surface of porosity75-95 nm formed by electrochemical anodization, and porosity of 40-50 nm formed by spray pyrolysis increasesthe heat transfer by 130%. Effects of porosity, flow velocity and scaling on the energy transfer are alsoscrutinized. This paper also analyzes the multifarious modes of nanoporous fabrication, to contrive both prodigiousand provident system.展开更多
文摘The effects of roughness geometries and relative roughness height at the slip flow regime to investigate the thermal and hydraulic performances of microchannel have been considered in the present article using a thermal Lattice Boltzmann Method(TLBM).A two dimensional 9-bit(D2Q9)single relaxation time(SRT)model is used to simulate this problem.In micro-flows,the local density variation is still relatively small,but the total density changes,therefore,in order to account this density variation and its effect on the kinematic viscosityν,a new relaxation time proposed by Niu et al.[13]is used.The roughness geometry is modeled as a series of square and circular riblets with a relative roughness height from 0%to 10%of the channel height.The friction coefficients in terms of Poiseuille number(Pn)and the dimensionless heat transfer rate in terms of Nusselt number(Nu)have been discussed in order to analyze the roughness effects.The thermal-hydraulic performance(η)is calculated considering the simultaneous effects of thermal and fluid friction(pressure drop)at the slip flow regime at Knudsen number,Kn,ranging from 0.01 to 0.10 with other controlling parameters for both kind of geometries.The results have been compared with previous published works and it is found to be in very good agreement.
文摘This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer ratehas been discovered. The maximum increase of heat transfer rate procured by nanoporous layers is 133.3% higherthan the polished bare metals of surface roughness 0.2μm. This plays an imperative role in designing compact refrigerationsystems, chemical and thermal power plants. Experimental results picture a formidable upswing of58.3% heat transfer in chemically etched metals of surface roughness 3 μm, 133.3% in nanoporous surface of porosity75-95 nm formed by electrochemical anodization, and porosity of 40-50 nm formed by spray pyrolysis increasesthe heat transfer by 130%. Effects of porosity, flow velocity and scaling on the energy transfer are alsoscrutinized. This paper also analyzes the multifarious modes of nanoporous fabrication, to contrive both prodigiousand provident system.