In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared vi...In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared video signals obtained by the experiment are processed with SAT.Then the infrared radiation signals are processed by EMD with Hilbert–Huang and the infrared radiation noise is effectively removed.The research results show that the desorption process,with the change of the temperature,is an endothermic process.The coal absorbs heat when the gas is desorbed and the temperature drops.The coal body temperature drop range is obviously related to coal particle size.The smaller the particle size is,the bigger the temperature drop becomes.The temperature variation curves in the process of coal gas desorption under different particle sizes are fitted,and they comply with the exponential function.The research results lay the theoretical and experimental foundation for non-contact prediction on working face of coal and gas outburst with infrared thermal image technology.展开更多
Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict fut...Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.展开更多
This paper presents the ageing mechanism of fuse in nuclear power plant in detail. Metal Electromigration is identified as the dominant ageing mechanism. On this basis, the dominant status indicators, temperature and ...This paper presents the ageing mechanism of fuse in nuclear power plant in detail. Metal Electromigration is identified as the dominant ageing mechanism. On this basis, the dominant status indicators, temperature and resistance of fuse were ensured, and current-temperature curve was proposed. The infrared thermal imaging technology was used to inspect the ageing condition and prove the current-temperature curve. Finally, the accelerated ageing testing was conducted abiding by the dominant ageing mechanism, and the lifetime was evaluated.展开更多
Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in micro-tubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the th...Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in micro-tubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the theoretical analysis and the numerical simulation at laminar state. Based on thermal imaging technology of micro-area, the temperature rise resulted from the viscous dissipation in microtube is measured by employing IR camera with a specially magnifying lens at different Reynolds numbers. A 2-D model adapted to microtube is presented to simulate the viscous dissipation characteristic considering electric double layer effect (EDL). The investigation shows the calculating results are in rough agreement with the experimental data if removing the experimental uncertainties. Based on the experimental and the numerical simulation results, a viscous dissipation number which can describe the law of the viscous heating in microtube is summed up and it explains the abnormity of the flow resistance in microtubes.展开更多
基金provided by the National Natural Science Foundation of China (No.51174157)the Doctor Start-up Fund of Xi’an University of Science and Technology of China (No.2013QDJ005)the Research Development Fund of Xi’an University of Science and Technology of China (No.201244)
文摘In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared video signals obtained by the experiment are processed with SAT.Then the infrared radiation signals are processed by EMD with Hilbert–Huang and the infrared radiation noise is effectively removed.The research results show that the desorption process,with the change of the temperature,is an endothermic process.The coal absorbs heat when the gas is desorbed and the temperature drops.The coal body temperature drop range is obviously related to coal particle size.The smaller the particle size is,the bigger the temperature drop becomes.The temperature variation curves in the process of coal gas desorption under different particle sizes are fitted,and they comply with the exponential function.The research results lay the theoretical and experimental foundation for non-contact prediction on working face of coal and gas outburst with infrared thermal image technology.
文摘Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.
文摘This paper presents the ageing mechanism of fuse in nuclear power plant in detail. Metal Electromigration is identified as the dominant ageing mechanism. On this basis, the dominant status indicators, temperature and resistance of fuse were ensured, and current-temperature curve was proposed. The infrared thermal imaging technology was used to inspect the ageing condition and prove the current-temperature curve. Finally, the accelerated ageing testing was conducted abiding by the dominant ageing mechanism, and the lifetime was evaluated.
基金supports of the National Natural Science Foundation of China (Grant No. 50976118)the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2010EM056) are gratefully acknowledged
文摘Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in micro-tubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the theoretical analysis and the numerical simulation at laminar state. Based on thermal imaging technology of micro-area, the temperature rise resulted from the viscous dissipation in microtube is measured by employing IR camera with a specially magnifying lens at different Reynolds numbers. A 2-D model adapted to microtube is presented to simulate the viscous dissipation characteristic considering electric double layer effect (EDL). The investigation shows the calculating results are in rough agreement with the experimental data if removing the experimental uncertainties. Based on the experimental and the numerical simulation results, a viscous dissipation number which can describe the law of the viscous heating in microtube is summed up and it explains the abnormity of the flow resistance in microtubes.